Space-Occupying Lesions of the Sensori-Motor Region

U. Ebeling1 and H.-J. Reulen2

1 Department of Neurosurgery, University of Berne, Berne (Switzerland), and
2 Department of Neurosurgery, Ludwig Maximilians University, Munich
(Federal Republic of Germany)

With 20 Figures

Contents
Summary ... 138
1. Introduction ... 139
2. Surgical Anatomy of the Sensori-Motor Region 139
 2.1. Definition of the Sensori-Motor Region 139
 2.2. Craniocerebral Topography of the Sensori-Motor Region 140
 2.3. Anatomy of the Medial Sensori-Motor Region 140
 2.4. Anatomy of the Lateral Sensori-Motor Region (Including Broca’s
 Area) ... 142
 2.5. Anatomy and Proportions of the Pyramidal Tract 144
 2.5.1. Anatomy 144
 2.5.2. Proportions 146
3. Clinical Syndrome and Neuroradiology of Central Lesions 147
 3.1. Clinical Syndrome 147
 3.2. Neuroradiology 148
4. Displacement of Anatomical Structures 150
5. The Role of Intraoperative Mapping of the Sensori-Motor Cortex 150
 5.1. Technique of Cortical Electrophysiological Mapping 151
 5.1.1. Cortical Electrical Stimulation (MCS) 151
 5.1.2. Results of Cortical Motor Stimulation 152
 5.1.3. Recording of Somato-Sensory Evoked Potentials 153
 5.2. Examples .. 155
 5.2.1. Central Falx Meningioma (General Anaesthesia) 155
 5.2.2. Anaplastic Glioma of the Precentral Gyrus (General
 Anaesthesia) 155
 5.2.3. Low-Grade Glioma of the Superior Frontal Gyrus (Local
 Anaesthesia) 156
5.2.4. Low-Grade Glioma of the Operculum (General Anaesthesia) . 158
5.2.5. Subcortical Central Metastasis (General Anaesthesia) 158
5.3. Anaesthetic Regimen ... 159
5.3.1. General Anaesthesia 159
5.3.2. Local Anaesthesia ... 160
6. Surgery of Central Lesions .. 160
6.1. General Considerations on Localization 160
6.2. Positioning of the Patient and Drug Regimen 163
6.3. Placement of Craniotomy 164
6.4. General Considerations on Surgical Strategy 165
6.5. Lesion-Specific Operative Techniques 166
6.5.1 Meningiomas .. 166
6.5.2. Low-Grade Astrocytomas 167
6.5.3. High-Grade Gliomas .. 168
6.5.4. Metastases .. 168
6.5.5. Cavernomas .. 168
6.5.6. Abscesses .. 169
6.6. Location-Specific Operative Approaches 169
6.6.1. Lesions in the Dorsal Frontal Gyri 169
6.6.2. Lesions of the Precentral Gyrus or Pyramidal Tract 170
6.6.3. Lesions of the Postcentral Gyrus and Anterior Parietal Lobule 173
7. Surgical Outcome .. 174
References ... 176

Summary

Successful surgery of the sensori-motor region requires precise pre- and intraoperative localization of the sensori-motor region and pyramidal tract. Important aids are the landmarks of cranio-cerebral topography, coronal suture and bregma and the sulcal anatomy of the sensori-motor region, which can be identified in CT or MR images. Due to considerable displacement and distortion of the anatomical structures, elicited by mass lesions, these aids often fail to render reliable support. In this situation, identification of the motor area can be achieved by electrical stimulation of the precentral gyrus in association with the recording of somatosensory evoked potentials of the pre- and postcentral gyrus. The localisation of the “motor mosaics” in relation to the lesion, enable determination of the direction of displacement of the motor strip and the fan of the pyramidal tract. Based on this information the most appropriate route of access to the lesion is selected, either transcortical or transsulcal. Lesion-specific operative techniques as well as location-specific approaches are discussed. With consequent application of these principles the risk of a new persistent motor deficit was as low as 4%. Thus, the indication for surgery in this area can now be set with greater confidence and far more generously than in the past.