On the \mathbb{Z}_2 Lattice Higgs System

S. Miracle-Sole

Centre de Physique Théorique CNRS

Marseille, France

Abstract

Some aspects of the phase structure of the \mathbb{Z}_2-lattice Higgs system are studied by means of convergent expansions.
1. Introduction

In these notes we study one of the Wegner's generalized Ising systems [1], a simple model for a gauge theory on a lattice according to Wilson's ideas [2]. Mainly, we discuss some results of joint works with G. Gallavotti and F. Guerra [3] and with R. Marra [4] concerning this system. More general lattice gauge theories are treated in other lectures at this conference and we refer to [5,6] for a general outline and results related to the present study.

The system can be described as follows. Let there be given a cubical lattice \(L \). To each bond \((i,j)\) of neighboring sites a variable \(A_{ij} = A_{ji} \) taking values in \(\mathbb{Z}_2 = \{-1, +1\} \) is assigned. A configuration \(A \) of the system is specified by giving the values of \(A_{ij} \) at each bond. An elementary square of four adjacent bonds is a plaquette \(p = (i,j,k,l) \) and we write \(A(p) = A_{ij}A_{jk}A_{kl}A_{li} \).

Let \(B \) be a given configuration on \(L \setminus A \) where \(A \) is finite. The energy (or the euclidean action in the field theory language) of the system restricted to \(A \) with boundary condition \(B \) outside \(A \) is

\[
H^B_A(A) = -\left(\sum_{\{i,j\} \cap A \neq \emptyset} A_{ij} + \beta_p \sum_{p \cap A \neq \emptyset} A(p) \right)
\]

(1)

where the configuration \(A \) coincides with \(B \) outside \(A \). The coefficients \(\beta_L \) and \(\beta_p \) are the coupling constants.

A gauge invariant version of this system can be presented by introducing extra \(\mathbb{Z}_2 \)-valued variables \(K_i \) at each site and replacing \(\beta_L \sum A_{ij} \) by \(\beta_L \sum K_i A_{ij} K_j \). In this form the system can be viewed as a gauge field theory on the lattice, the Higgs and the Yang-Mills fields being respectively described by the variables \(K_i \) and \(A_{ij} \). However, the gauge transformation \(A_{ij} \rightarrow K_i A_{ij} K_j \) eliminates the \(K \)'s while leaving the plaquette term invariant, and reduces this gauge field system to the model (1).