Activation of fungal silent gene clusters: A new avenue to drug discovery

By Axel A. Brakhage1, Julia Schuermann2, Sebastian Bergmann1, Kirstin Scherlach2, Volker Schroeckh1 and Christian Hertweck2

1Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), and Friedrich Schiller University, Beutenbergstr. 11a, 07745 Jena, Germany
<axel.brakhage@hki-jena.de>

2Biomolecular Chemistry, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), and Friedrich Schiller University, Beutenbergstr. 11a, 07745 Jena, Germany
Abstract

The ongoing exponential growth of DNA sequence data will lead to the discovery of many natural-product biosynthesis pathways by genome mining for which no actual product has been characterised. In many cases, these clusters remain silent under laboratory conditions. New technologies based on genetic engineering are available to induce silent genes. Heterologous expression of a silent gene cluster under the control of defined promoters can be applied. Alternatively, promoters of biosynthesis genes within the genome can be exchanged by defined promoters. Most promising, however, is the activation of pathway-specific regulatory genes, which was recently demonstrated. Such regulatory genes are present in many secondary metabolite gene clusters. This approach is rendered feasible by the fact that all of the genes encoding the large number of enzymes required for the synthesis of a typical secondary metabolite are clustered and that in some cases, a single regulator controls the expression of all members of a gene cluster to a certain extent. The advantage of this technique is that only a small gene needs to be handled, and that an ectopic integration is sufficient, bypassing all limitations of homologous recombination. Most conveniently, this strategy can trigger the concerted expression of all pathway genes. The vast amount of DNA sequences in the public database represents only the beginning of this new genomics era. The activation of these gene clusters by genetic engineering will lead to the discovery of many so far unknown products and therefore represents a novel avenue to drug discovery.

1 Introduction

Natural products remain a consistent source of drug leads with more than 40% of new chemical entities reported since 1981 being derived from microbial natural products (reviewed in [1–3]). Even more remarkable is that more than 60% of the anticancer and 70% of the anti-infective antibiotics currently in clinical use are natural products or natural product-based compounds (reviewed in [4]). Secondary metabolites from microorganisms have been, and continue to be, a leading source of molecules for drug discovery, but new technologies are required to increase the probability of identifying new structures (reviewed in [5]). While bacteria and fungi have long been known as prolific producers of drug candidates, analyses of their genome sequences revealed that there are far more biosynthesis gene clusters than there are currently known metabolites for a given organism. This observation strongly suggests that the biosynthesis potential for natural products in microorganisms has been greatly underexplored by traditional methods of natural-product discovery and that a multitude of potentially useful metabolites still awaits discovery [6]. This is in full agreement with the one-strain-many-compounds (OSMAC) approach of Zeeck and co-