20 Flächenberechnung mit Hilfe der Integralrechnung

20.1 Ganzrationale Funktionen

20.1.1 Gegeben ist die Funktion mit der Funktionsgleichung
\[f(x) = \frac{1}{6}x^3 - x^2 - \frac{1}{6}x + 5 \]

Berechnen Sie die Nullstellen. Bestimmen Sie den Flächeninhalt der beiden durch den Funktionsgraphen und die x-Achse begrenzten Flächen.

Nullstellen: \(f(x) = 0 \):
\[\frac{1}{6}x^3 - x^2 - \frac{1}{6}x + 5 = 0 \text{ oder } x^3 - 6x^2 - x + 30 = 0 \]

Hornerschema:

<table>
<thead>
<tr>
<th>x_1 = -2</th>
<th>1</th>
<th>-6</th>
<th>-1</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2</td>
<td>16</td>
<td>-30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-8</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

\[x^2 - 8x + 15 = 0 \]
\[x_{2/3} = 4 \pm \sqrt{16 - 15} = 4 \pm 1 \]
\[x_2 = 5; x_3 = 3; \text{ N}_1 (-2; 0); \text{ N}_2 (3; 0); \text{ N}_3 (5; 0) \]

Integrationsintervalle: \([-2; 3]\); \([3; 5]\)

\[A_1 = \int_{-2}^{3} \left(\frac{1}{6}x^3 - x^2 - \frac{1}{6}x + 5 \right) \, dx = \left[\frac{1}{6} \cdot \frac{x^4}{4} - \frac{x^3}{3} - \frac{x^2}{12} + 5x \right]_{-2}^{3} \]
\[A_1 = \frac{27}{8} - 9 - \frac{3}{4} + 15 - \left(\frac{2}{3} + \frac{8}{3} - \frac{1}{3} - 10 \right) = 15 \frac{5}{8} = 15,625 \text{ FE} \]

Wir wollen beim nächsten Integral die Grenzen vertauschen, damit wir einen positiven Integralwert für die Fläche erhalten.

\[A_2 = \left[\frac{1}{6} \cdot \frac{x^4}{4} - \frac{x^3}{3} - \frac{x^2}{12} + 5x \right]_{5}^{3} = \frac{3^3}{8} - 9 - \frac{3}{4} + 15 - \left(\frac{5^4}{24} - \frac{5^3}{3} - \frac{25}{12} + 25 \right) = 4 \frac{3}{3} \text{ FE} \]

\[A_{ges} = A_1 + A_2 = 16 \frac{23}{24} \text{ FE} \]
20.1.2 Berechnen Sie die Fläche zwischen dem Funktionsgraphen von
\[f(x) = x^2 + x - 2 \] und dem Funktionsgraphen von
\[g(x) = -\frac{1}{2}x^2 + x - \frac{1}{2} \] rechts des Schnittpunktes von P(−1; −2).

Schnittstellen der Funktionsgraphen:
\[f(x) = g(x) \]
\[x^2 + x - 2 = -\frac{1}{2}x^2 + x - \frac{1}{2} \]
\[\frac{3}{2}x^2 - 1,5 = 0 ; \ x_{1/2} = \pm 1 \]

Integrationsintervall: \([-1; 1]\]

\[A = \int_{-1}^{1} (f(x) - g(x)) \, dx = \int_{-1}^{1} \left(\frac{3}{2}x^2 - 1,5 \right) \, dx = \left[\frac{3}{2} \cdot \frac{x^3}{3} - 1,5x \right]_{-1}^{1} \]

\[|A| = \left| \frac{1}{2} - 1,5 - \left(-\frac{1}{2} + 1,5 \right) \right| = 2 \text{ FE} \]

20.1.3 Gegeben sind die Funktionen mit den Funktionsgleichungen
\[f(x) = \frac{1}{10}x^2(x^2 - 9) \] und \[g(x) = -2x^2 + 6x \]

Berechnen Sie den von den Funktionsgraphen \(K_f \) und \(K_g \) begrenzte Fläche im 1. und 4. Quadranten.

Schnittstellen der Funktionsgraphen:
\[f(x) = g(x) \]
\[\frac{1}{10}x^2(x^2 - 9) = -2x^2 + 6x \]
\[\frac{1}{10}x^4 + \frac{11}{10}x^2 - 6x = 0 \]
\[x \cdot (x^3 + 11x - 60) = 0 \]
\[x_1 = 0 \]

Hornerschema:

\[
\begin{array}{c|cccc}
 x_1 = 3 & 1 & 0 & 11 & -60 \\
 3 & 3 & 9 & 60 \\
 1 & 3 & 20 & 0 \\
\end{array}
\]