Diabetes mellitus is a common disease. The worldwide prevalence of diabetes—especially of the predominant type 2 diabetes mellitus which accounts for about 90% of the adult diabetic population—has increased rapidly and continuously during the last several decades. This phenomenon is a direct consequence of negative lifestyle changes in the population, including a reduction of physical activity and the availability of energy-dense food rich in saturated fat, leading to an increased prevalence of obesity. The global prevalence of diabetes mellitus in adults is predicted to increase to 5.4% in the year 2025 [1].

The highest incidence of adult-onset diabetes is to be expected in age groups over 65 years in the developed countries. In the developing countries, the majority of affected individuals are predicted to be among the middle-aged population of 40–65 years [2]. Type 2 diabetes is commonly associated with a whole range of cardiovascular risk factors, such as hypertension, atherogenic dyslipidemia, abdominal obesity, and a procoagulatory state, including platelet dysfunction, impaired fibrinolytic activity, and increased fibrinogen serum concentrations [2–4].

Epidemiology of Heart Failure in Patients with Diabetes Mellitus

Epidemiological evidence in the community shows the prevalence of left ventricular systolic dysfunction in diabetic patients to be twice as high as in nondiabetic patients, with half of the cases being asymptomatic. Diastolic
dysfunction is even more frequent in comparison with nondiabetic persons. This high prevalence has been explained by the frequent coexistence of underlying diabetic cardiomyopathy, hypertension, and ischemic heart disease. In these patients, the diabetic metabolic derangement, together with early activation of the sympathetic nervous system leads to a reduction in myocardial function. Activation of the renin–angiotensin system may also contribute to unfavorable cardiac remodeling. The progression from myocardial damage to overt dysfunction and heart failure is often asymptomatic chronic and frequently undiagnosed and untreated.

The Framingham Study was the first epidemiological study to demonstrate an increased risk for congestive heart failure in patients with diabetes mellitus. Compared with nondiabetic men and women, the estimated increase in the incidences of heart failure for young diabetic men and women were fourfold and eightfold, respectively [3].

A recent Italian cross-sectional study showed a 30% prevalence of diabetes in an elderly population with heart failure. The association with diabetes was independent of age, sex, blood pressure, body mass index, or waist/hip ratio, and also of a family history of diabetes. The incidence of diabetes was 29% during three years of follow-up among heart failure patients initially without this diagnosis, compared with an 18% incidence in a group of matched controls. On the basis of multivariate statistics, congestive heart failure independently predicted the later development of type 2 diabetes. One possible explanation is that increased adrenergic tone associated with heart failure, increases free fatty acid oxidation and insulin resistance, thereby reducing glucose oxidation and precipitating type 2 diabetes [5].

Prevalence of Atrial Fibrillation in Patients with Diabetes Mellitus

With an incidence of 3–6% in patients > 60 years of age, and with significant comorbidities and complications, especially, ischemic cerebrovascular “accidents” (e.g., stroke, thromboembolic events), atrial fibrillation (AF) is the most common sustained arrhythmia in elderly patients managed by cardiologists [6] and constitutes a significant public health problem. Patients with diabetes mellitus constitute 10.7% of all those with AF—a considerable subgroup [7]. The coexistence of these two conditions is associated with a 1.7 relative risk increase for ischemic stroke and thromboembolic events, to which diabetic individuals are especially prone due to their impaired platelet function and decreased spontaneous fibrinolytic capability.

Recently, Maggioni et al. [8] conducted a retrospective analysis of the ValHeFT database in an attempt to identify independent predictors of AF development, as well as to assess the rate of new-onset AF in patients with chronic