Chapter 7
Analysis and Troubleshooting

Contents

Bibliography 246
7.1 How to Design Primers for Real-Time PCR Applications 247
 7.1.1 TaqMan® Probes and Primer Design 249
 7.1.2 Storage of Primers and TaqMan® Probes 250
 7.1.3 SYBR® Green Assays 250
 7.1.4 Optimisation of Primer Concentration 252
 7.1.5 Multiple Bands on Gel or Multiple Peaks in the Melting Curve 253
 7.1.6 Effect of Magnesium Chloride and Primer Concentration 254
 7.1.7 Molecular Beacons Assays 254
7.2 Assay Performance Evaluation Using Standard Curves 254
 7.2.1 Threshold Selection 255
 7.2.2 Quantification of Gene Targets with the
 Quantitative Real Time PCR: Absolute and Relative
 Gene Quantification 256
 7.2.3 Relative Quantification 256
7.3 Most Common Problems When Performing Real-Time PCR 257
 7.3.1 PCR Amplification Problems 257
 7.3.2 Control Samples 258
 7.3.3 Signal Problems in Real Time PCR 258
 7.3.4 Amplification Plots 259
7.4 Summary: Optimised Real-Time PCR Assay 260

7.1 How to Design Primers for Real-Time PCR Applications

When designing primers, it is of initial importance to define the target area,
and secondly the type of application. The BLAST function from the National
Center for Biotechnology Information (NCBI) will help to identify the most suit-
able gene sequence to be used. There are many software programs; some free on
websites/pages on the internet, dedicated to primer design and primer optimisation. In this chapter the most important factors that need to be taken into consideration when designing and optimising primers are highlighted.

As a rule of thumb, the following guidelines should be followed when designing primers:

- Primers and probes should be selected in a region with a GC content lower than 80%.
- The amplicon size recommended for real-time PCR applications is between 50 and 150 bp. Do not exceed the amplicon size of 300 bp when designing primers as time efficiency is paramount as it will have a delayed effect on the \(C_T \).

When dealing with cDNA or mRNA amplification procedures – it is advisable to design a primer or probe which crosses one exon junction, thus in the case of genomic DNA contamination the latter will not be amplified. (Fig. 7.1 and Fig. 7.2)

- Primers should be 15–30 mer in length.
- Avoid the presence of secondary structures or primer-dimer formation, as they can interfere with the amplification, particularly in SYBR® green applications.

Fig. 7.1 Primers aligning to exons flanking an intron. Any product amplifying gDNA will be much larger than a product amplified from intronless mRNA

Fig. 7.2 Primers that bridge an exon-exon junction on mRNA. No amplification of gDNA