In the course of this conference the evidence of cleavage in our experiments has been questioned. Therefore we would like to recollect, for easy reference, the evidence as it is published in the literature. In connection with the earlier experiments on the effect of loading rate and temperature on the ductile to brittle transition in Fe2.6%Si single crystals we published pictures (fig. 6 from (1), reproduced here as fig. 1) which show (100) crack facets with a cleavage like appearance. In those experiments the orientation was selected to produce ductile crack advance with the help of alternating slip on the (1,0,-1) and (0,1,-1) slip planes. They intersect along the [1,1,1] direction on the (1,-1,0) fracture plane. If the crack opening rate, $\dot{\gamma}$, is increased by a factor of two only, the plane (1,-1,0) fracture surface becomes heavily fragmented. The fragments are all (1,0,0) facets which look very much cleavage like.
chosen in such a way that slip occurs on the planes (2,1,-1) and (2,-1,1) which intersect along the [0,1,1] direction on the (1,0,0) fracture plane.

FIGURE 2: As fig. 1, now the transition is due to gaseous hydrogen. Crack growth from top to bottom. From 3,4).

FIGURE 3: As fig. 1, but now on a (100) plane. Crack growth from top to bottom. From 5,2).

FIGURE 4: As fig. 3, but now showing fast pop-ins, which show up in the loading curve. Crack growth from top to bottom. From 5).

FIGURE 5: Secondary carbon replica (taken according to the procedure proposed by Lynch (5)) from a fracture surface in Fe2.6%Si in hydrogen. The arrow indicates the direction of crack growth. There is no evidence of voids. From 4).

Slip on these two planes produces ideal ductile crack growth on the (1,0,0) plane. An increase of the crack tip opening rate produces microscopically flat (1,0,0) quasi-cleavage planes on which the crack tip opening angle can