TRAINING AND EDUCATION OF PHARMACISTS FOR RADIOPHARMACY

C.R. LAZARUS

INTRODUCTION

Wolf and Tubis in 1969 (1) identified 3 factors influencing the need for more trained radiopharmacists: a) the increasing use of short-lived radionuclides in nuclear medicine necessitating "in-house" preparation of radiopharmaceuticals, b) the requirement for some radiopharmaceuticals not commercially available, and c) a need to conform to certain regulatory requirements for competent personnel to handle radiopharmaceuticals. They described a "radiopharmacist" as a professional responsible for the preparation of pharmaceuticals, albeit tagged with a radioactive nuclide, who had to be a pharmacist with an adequate background in the various sciences which a pharmacist receives. In his paper on the future of radiopharmacy education, Peng in 1972 (2) concluded that the supply of radiopharmacy manpower was falling behind the rate of growth of nuclear medicine. He also claimed that radiopharmacy belonged to the discipline of pharmacy, and that the handling of radiopharmaceuticals required professionally trained personnel. The manner in which this training was to be accomplished presented a challenge to pharmacy educators, and upon the outcome of that challenge hung the future of radiopharmacy.

EDUCATION AND TRAINING

In order to see how far the challenge described by Peng (2) had been met a survey has been conducted and the results presented in this chapter. The purpose of the survey was to ascertain how far radiopharmacy education and training had developed for undergraduate and postgraduate pharmacy students, and how hospital radiopharmacists now in post had been trained.

P. H. Cox et al. (eds.), Progress in Radiopharmacy
© Martinus Nijhoff Publishers, Dordrecht 1986
Survey of education and training. A questionnaire was sent to 62 countries and 11 replies were received from Hungary, Switzerland, Holland, Norway, Denmark, Belgium, United Kingdom (UK), United States (US), Canada, Uruguay and Malaya. A decision was made to send the questionnaire to an individual in each of the countries who, it was judged, would be able to answer the questions with a knowledge of the situation in his own country. This method was chosen in preference to a blanket survey of each country which would have resulted in an unmanageable abundance of data, or by sending the questionnaire to an authority, such as the pharmaceutical society of each country, who would presumably have passed it on to an appropriate individual for answering. The small number of replies may reflect an incorrect selection of the appropriate person in each country or merely a lack of time or interest in responding. However, sufficient replies were received from those countries where pharmacists are active in radiopharmacy to provide some interesting and worthwhile observations.

Undergraduate and postgraduate courses. In response to a question asking whether their country had a formal policy, as laid down by their pharmaceutical society or other governing body, to include radiopharmacy in pharmacy courses, only two respondents said this was the case. Radiopharmacy is formally included at undergraduate level in Holland and Norway, and in postgraduate courses in Holland and Uruguay. It is, however, the policy of some schools of pharmacy in some countries to include radiopharmacy in their courses, for example the University of Leuven in Belgium and some schools in the US and UK. In the UK radiopharmacists are mentioned as being included in one of the elements - Pharmaceutical Aspects of Medicines - which the Council of the Pharmaceutical Society of Great Britain would like to see properly represented in an approved pharmacy degree. The Council has a policy for the approval of degrees in pharmacy for the purposes of registration of graduates with the Society. Guidance is given by the Society on course content and, although there is no obligation, all the UK schools of pharmacy generally follow the guidance. No specific reference is made to practical