THE SYNTHESIS AND BIODISTRIBUTION OF A RADIOIODINATED
G\textsubscript{M1} GANGLIOSIDE DERIVATIVE

M.R. ZALUTSKY, P. GALLAGHER, P. MAGISTRETTI

INTRODUCTION

The development of two tracers, N-isopropyl-p-(I123)- iodoamphetamine (I123-IMP) (1,2) and N, N, N'-trimethyl-N'--(2-hydroxyl-3-methyl-5-iodobenzyl)-1,3-propanediamine(I123)(I123-HIPDM) (3) has resulted in a renewed interest within the realm of nuclear medicine in the measurement of cerebral blood flow. Of particular interest is the use of these radiopharmaceuticals for the early diagnosis of stroke. Using emission tomography with I123-IMP, Hill and co-workers (4) were able to detect regions of cerebral impairment prior to their appearance as abnormalities on CT scans.

It is important to bear in mind that I123-IMP and I123-HIPDM distribute in the brain in proportion to cerebral blood flow and thus delineate regions of vascular insult indirectly; that is, infarcts appear as photon-deficient areas within a "hot" background. Contamination of the image by scattered photons, especially those resulting from the high-energy emissions of I124 impurities, and the superimposition of activity from normal brain tissue in adjacent planes, both make it difficult to define the boundaries of a lesion unless tomographic instrumentation is employed.

The development of a radiopharmaceutical which accumulates preferentially in damaged brain tissue might provide a more sensitive and selective method for the early detection of cerebral infarcts. Ganglioside G\textsubscript{M1} is a glycosphingolipid which appears to be involved in the repair process of damaged nerve tissue (5-7). When labelled with an isotope such as I123, G\textsubscript{M1} might be useful as an infarct-avid tracer for the early diagnosis of stroke. The purpose of this study was
first to develop a rapid and efficient technique for labelling
G_{M1} with 125I. The stability and neuronal membrane binding
properties were then studied in vitro. Finally the distribu-
tion of I^{125} following injection of I^{125} labelled G_{M1} was
studied in the mouse and, in preliminary fashion, in the
gerbil infarct model. A more detailed description of the in
vivo aspects of this work will appear elsewhere (8).

METHODS OF PROCEDURE

Labelling G_{M1} with 125I. Direct iodination. Ganglioside
G_{M1} isolated from bovine brain by the method of Tettamanti
and co-workers (9) was obtained from FIDIA Laboratories.
Initial attempts to label G_{M1} with 125I were performed using
the iodine monochloride method (10), modified as follows: The
I^{125} activity (1 mCi, adjusted to pH 7.4) was added to 0.5 ml
methanol/chloroform (1:1) containing 16 μmol of G_{M1}. Addition
of 1.6 μmol each of I_2 and $HgCl_2$, both in $CH_3OH/CHCl_3$, generat-
ed the ICI in situ. The reaction was terminated after 12 hr
by the addition of an excess of sodium metabisulfite. After
drying under nitrogen, the reaction mixture was resuspended
in phosphate buffered saline (pH 7.4) and passed through a
Sephadex G-50 column to separate the I^{125} labelled G_{M1} from
inorganic 125I.

Radioiodination of a G_{M1}-tyramine conjugate. A method
alogous to that reported by Klemm and co-workers (11) was
used to synthesize the G_{M1}-tyramine conjugate. Oxidation of
the terminal galactose residue of G_{M1} was effected by addition
of 30 μmol of KIO$_4$ to 20 μmol of G_{M1} in 0.01 M pH 8.4 borate
buffer. The reaction was terminated after 4 hr at 37°C by the
addition of an excess of glycerol. The oxidized G_{M1} micelles
were purified by dialysis against pH 8.4 borate buffer and
then reacted for 24 hr at 25°C with a 4-fold molar excess of
both tyramine and 2 M NaBH$_3$CN in pH 8.4 borate. The reaction
mixture was then dialyzed against borate buffer for 48 hr.

The G_{M1}-tyramine conjugate was labelled with I^{125} using
iodogen (12). Varying amounts of iodogen in methylene chloride
were added to 5-dram glass vials and evaporated under nitrogen.