Visual field assessment using the Octopus Perimeter was carried out on 96 eyes with early P.O.A.G. The central visual field was assessed quantitatively using programmes 31 and 32 while the peripheral field was assessed using a two-step suprathreshold screening programme (07).

In all cases, central field changes were noted while in 80 eyes peripheral nasal field changes were present. No cases were found with isolated nasal field defects in this series.

The assessment of the peripheral nasal field as an integral part of the visual field examination of glaucoma patients, has been the subject of several reports in the literature since 1971 (1–3, 5, 6, 8, 9). Prior to 1970 little was written about this subject, although the peripheral nasal step had been well described by Rönne or Rønne (6) at the end of the last century. Several of the reports which have appeared during the past decade have confirmed the importance of isolated nasal steps as an early sign of glaucomatous damage (1, 5, 6, 8). Most authors agree that the incidence of this sign is inversely proportional to the quality of the central field examination. Nonetheless, the incidence of this sign remains at a significant level (4 to 8%) even when the central field is tested with static techniques using the Goldmann perimeter.

With the increasing use of automated perimetry, particularly for the quantitative assessment of the central field, it is of interest to re-assess the value of the peripheral nasal field in the diagnosis of glaucomatous field loss. The purpose of this study was to assess the significance of the nasal field in patients having visual field assessment using automated quantitative perimetry.

MATERIALS AND METHODS

A retrospective review of all records of primary open angle glaucoma patients followed in the Nova Scotia Eye Centre was carried out. All patients were carefully followed regularly and were diagnosed as primary open angle
glaucoma on the basis of ophthalmological and perimetric assessment. Excluded from review were all cases of secondary glaucoma, angle closure glaucoma and pseudoexfoliative glaucoma. Cases of advanced field loss were also excluded to allow this study to consider only early or moderate field loss cases.

Ninety-six (96) eyes were retained for assessment each having had initial and follow-up visual field examination on the Octopus 201 Perimeter. All eyes had peripheral field testing carried out using Programme 07 (spatially related suprathreshold screening) while the central visual field was assessed using a programme from the 30 Series (Figs. 1 and 2). Each visual field examination was independently assessed to consider the presence or absence of (a) a central field defect, (b) a peripheral nasal defect and (c) the concomitant

\[\text{Correction, (sph., cyl., + axis): } +2.00 \quad +0.00 \quad +0 \]
\[\text{Diameter of pupil, headposition: } 5.00 \quad 06 \]
\[\text{Size of stimulus: } 3 \]
\[\text{Fixationring: } 07 \]
\[\text{Program number: } 07 \]
\[\text{Number of questions: } 206 \]
\[\text{False positive answers (%: } 0(0/20) \]
\[\text{False negative answers (%: } 0(0/0) \]

\[\text{Date of printout: } 304.1984 \]

\[\text{LEGEND: } \]
\[\text{NORMAL} \]
\[\text{RELATIVE DEFECT} \]
\[\text{ABSOLUTE DEFECT} \]

\[\text{Fig. 1. Two level suprathreshold screening (Program 07) using Octopus perimeter showing nasal contraction with step accompanied by superior arcuate scotoma.} \]