Knowledge of some of the common parasitic helminths must go back to prehistoric times. It is unthinkable that our primitive ancestors never encountered *Ascaris* or tapeworms. The ancient Egyptians were certainly familiar with intestinal worms and haematuria, the most common clinical manifestation of *Schistosoma haematobium*, is mentioned in four medical papyri, for example 28 times in *Papyrus Ebers*. Galen (AD 170) recognized three human species of intestinal worms, *Ascaris, Enterobius* and *Taenia*. Later on, some idea of their medical importance was gained. But it was not until about the middle of the nineteenth century that attempts were made to assess the size of the problem in terms of the effects of parasitic helminths on the health of man and animals. It was also at that time that the bladderworm (*Echinococcus*) already known by Hippocrates, was recognized as one of the most dangerous and incurable parasitic diseases. This disease is still a very serious problem in sheep-raising parts of the world. Furthermore, goats, camels and pigs, together with dogs, maintain the life cycle in various countries. Despite efforts to control echinococcosis, this disease still constitutes a substantial economic and health problem in most livestock-raising areas of the world.

Although the experimental proof that *Cysticercus cellulosae* changes into *Taenia solium* within the human intestine was published by Küchenmeister in 1855 only, the cystic stage must have been noticed since man killed animals for food or for sacrificial purposes. According to Küchenmeister the Mosaic prohibition of the flesh of the pig, hare and rabbit was probably because of their being known to harbour cysticerci (it should be mentioned that Deuteronomy, Chapter 14, verse 8 has been related to trichinosis too). Aristotle speaks of the cysticerci of pigs as having been known for ages. This zoonosis also causes economic losses but it is difficult to obtain estimates of actual figures. A study done in Chile indicates that, over a 15 year period *T. solium* cysticercosis has resulted in a loss of US $2,400,320.
Taeniasis in man due to *Taenia saginata* is not a serious human health problem. However, condemnation of cattle carcasses due to cysticercosis leads to a considerable loss of protein.

The common liver fluke, *Fasciola hepatica*, is another helminth causing considerable loss of protein resulting from condemnation of livers. This parasite has been known as an important parasitic helminth of sheep since mediaeval times. An accurate description of the manner of acquisition of *Fasciola* in sheep and its damage to the liver can be found in *Le Bon Berger*, a book completed in 1379 by Jean de Brie. He wrote: ‘The malady of the fluke can remain hidden for a year or more, but finally the sheep dies because the fluke destroys the liver’. Thomas, in a classic description of the natural history of the liver fluke and of the prevention of liver-rot, suggested that in view of the complex nature of the parasite’s life cycle, farmers should use a combination of control measures including drainage, grazing management and molluscicides to ensure a satisfactory degree of control. He also proposed a system once the sheep were infected: ‘Unless sheep are very valuable it may be better to kill them instantly they are known to be infected; for we shall thus prevent the production of more eggs and the propagation of the fluke. The cure of sheep, if cure be possible, will probably cost more than it is worth . . . Above all, livers of flued sheep should be destroyed, for if every egg succeeded in producing a fluke a single liver might contain sufficient eggs to destroy a flock of 50,000 sheep.’

Generations of cattlemen have also recognized the damage caused by liver flukes and it is commonly accepted that *Fasciola hepatica* and *Fasciola gigantica* cause a considerable economic loss. For example, Armstrong found that, 42 days after infection, calves weighed about 11 kg less than the uninfected controls. This study shows that the liver fluke can cost the cattleman as much as $20 per head. This is one of the few attempts that have been made to assess, in economic terms, the losses due to helminthiasis. To control worm diseases other possibilities than those suggested by Thomas are currently available. A variety of anthelmintics may play a role in livestock parasitism. Thanks to the strategic use of these anthelmints, we no longer hear of outbreaks of haemonchiasis in Australia or of acute fascioliasis in the United Kingdom.

Crossland et al. did field trials to investigate the effects of fascioliasis control on the productivity of lowland sheep. The molluscicide trifenmorph and the fasciolicide, oxyclozanide, were used. After 3 years the ewe flock was slaughtered and at postmortem examinations 33 (means per plot: 1.3–134) liver-flukes were recovered per ewe from untreated plots compared with 0.1 (means per plot: 0–0.6) per ewe from treated plots. Ewes from untreated plots gained significantly less weight and were significantly less productive than ewes from treated plots. There was a negative correlation between the numbers of liver-flukes per ewe and the weight of lambs produced.

The economic value of the treatment with the flucicide closantel of lambs infected naturally with *F. hepatica* was investigated by Kearney. Twelve weeks after treatment a weight gain of 1.86 kg per lamb was found as compared with 0.32 kg per lamb in the untreated control group.

Anderson and colleagues published an interesting study on the economic