What this paper is going to present is not — strictly speaking — my work alone, but rather the outcome of the cooperation of all the participants in a series of seminar courses that is still running at the Free University of Berlin and started 1967–68 at the University of Pennsylvania, Philadelphia.

We restricted our undertaking at the outset to be strictly a systematic analysis of the text of the *Critique*, not an analysis of Kant and not a historical analysis. This soon led us into selecting a somewhat unusual but to us especially interesting point of view from which to look at the theories propounded in the *Critique*. When we came to the *Preface* of the second edition it struck us that Kant there, in explaining what he calls the ‘Copernican Revolution’ made by his *Critique* with respect to Philosophy of Science and epistemology in general, argues in a curiously pragmatistic way. (I am alluding here to the pragmatism of Charles S. Peirce or Wilhelm Dilthey, not to that of William James.)

There are two traits which later have become centrally associated with what Peirce called Pragmatism right in the first sentence of the second *Preface* which says: “Whether the treatment of such knowledge as lies within the province of reason does or does not follow the secure path of a science, is easily to be determined from the outcome” (B VII).

In the context ‘outcome’ does not refer to a final or static product like a certain theory but to the character of systematic progress which the development of the science in question takes on. The two pragmatistic traits are (1) that science here is not taken as an aggregate or system of sentences believed to be true but as a process; and (2) that this process is characterized as scientific by exhibiting a certain peculiar kind of systematic controlled progress.

The question then is: what is the structure that gives the process that
peculiar dynamic property of being a systematic progress? The answer to this question is given by a rough sketch of the structure in B XII–XIV. The text there says:

... reason gains insight only into that which it produces after a plan of its own, ... it must proceed with principles for its judgments, according to unchanging laws, forcing nature to answer reasons' own questions...; because otherwise, without a previously designed plan, mere accidental observations can not be connected in a necessary law, which alone is what reason needs and is searching for. Reason, with its principles, according to which alone concordant appearances can be validly connected by laws, in one hand, and with the experiment, which it devised in conformity with (the principles and laws) in the other, must confront nature to be taught by it, not as a pupil listening to whatever the teacher says, but like an appointed judge who compels the witnesses to answer the questions which he puts to them (B XIII).

It is possible to aid a little more detail to this summary description of the structure of inquiry by looking into the text of The Doctrine of Method.

There we are told with respect to hypotheses and proofs that an opinion as to the actuality of some object or event not given can be entitled an hypothesis only if it brings the alleged object or event as an explanatory cause or reason in connection with something actually given (B 798; see also 803). “In the explanation of given appearances, no things or grounds of explanation may be adduced other than those which have been connected with given appearances in accordance with already known laws of the appearances (B 800; see also 803). Such hypotheses must be ‘physical’ and not ‘hyperphysical’ (B 800–1). A “requirement for the admissibility of an hypothesis is its sufficiency for an a priori derivation from it of consequences which are given (B 802, see also 803). “... various sciences... when the grounds from which some knowledge is to be derived are too numerous or too deeply concealed try to arrive at the knowledge in question through its consequences. But the modus ponens, inferring the truth of an assertion from the truth of its consequences presupposes that all possible consequences are (known to be) true... But... to discover all possible consequences of any given proposition exceeds our powers”. Thus the use of this mode of reasoning can at best serve us to make something plausible as an hypothesis “on the ground that if all examined consequences agree with an assumed ground, all other possible consequences will do so too”. On the other hand “the modus tollens of arguments proceeding from consequences to their gronds is not only a quite rigorous but also an extremely easy mode of proof. For if even a single