NEW MASSIVE CLOSE BINARY MODELS AND THE 26AL YIELD OF THE WR COMPONENT OF γ VEL

H. BRAUN and N. LANGER
MPI für Astrophysik, Karl-Schwarzschild-Straße 1, D-85740 Garching, B.R. Deutschland

Abstract. We present new models of massive close binary evolution, using an up-to-date hydrodynamic binary code which includes time dependent mixing of chemical species in the stellar interior, and nuclear reaction networks for the CNO cycles as well as for the NeNa and MgAl cycles. Some of our models, tailored to fit γ Vel, provide for the first time detailed results for the production and ejection of 26Al into the interstellar medium by WR binaries. From our results one can estimate the contribution of WR stars to the amount of 26Al presently seen in the Milky Way by γ-ray satellites.

1. Introduction

The evolution of stars in a massive close binary systems offers an important channel to originate WR stars. According to Podsiadlowski et al. (1992) and Vanbeveren & de Loore (1993) a fraction of 20-40% of WR stars forms in massive close binaries. Maeder & Meynet (1994) conclude that this fraction is well below 10% for high metallicities, but the majority of WR stars with low metallicities forms through the binary channel. These results raise the question in which way WR stars in a binary system are different from those evolving from single stars.

Here we focus on the aspect of the production and ejection of the radioactive isotope 26Al. We present models for massive close binaries of solar metallicity with initial masses 20+18 M_{\odot} and 50+45 M_{\odot} as well as two models for a 40 M_{\odot} star, one of which evolves similar to a primary in a case B binary system. This work is related to recent observations of the 1.8 MeV γ-ray line by the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO, Gehrels et al. 1993). This line is produced by the β^+-decay of 26Al, an isotope for which WR stars are suggested to be a major production site (Prantzos 1991). The observations indicate the possibility of a discrete γ ray line source in direction of the WC+O binary system γ Vel (WR11, Diehl et al. 1994). Although the measured flux (corresponding to $\sim 10^{-4} M_{\odot}^{26}$Al, Oberlack 1994) has no strict statistical significance it is important to ask, whether WR stars are at all able to release enough 26Al to explain the observations, and how the binarity can effect the 26Al yield.

2. Input physics

For our investigations we use a hydrodynamical stellar evolution code which includes mass loss according to Kudritzki et al. (1987) and Nieuwenhuijzen.
306

H. BRAUN AND N. LANGER

Fig. 1. a) 26Al abundance in the circumstellar medium for a 50+45 M_\odot system as a function of the remaining mass of the primary. The parameter β is the fraction of mass lost by the primary that is accreted on the secondary. The dotted line indicates the 26Al abundance of a 50 M_\odot single star with an LBV phase after core hydrogen burning. b) same as (a) but for 40 M_\odot single stars evolving through a RSG or through an LBV phase.

...de Jager (1990), OPAL opacities (Rogers & Iglesias 1992) and WR mass loss rates according to Hamann (1993) and Langer (1989). Our models are calculated with the Ledoux-criterion for convection and include time dependent semi-convective mixing of the chemical species (Langer et al. 1983). The nuclear network includes all relevant reactions to cover hydrogen and helium burning and those needed to follow the production of 26Al (NeNa and MgAl cycles). The initial periods of the calculated systems have been chosen to imply Case B mass transfer (Kippenhahn & Weigert 1967), i.e., the primary star fills its Roche lobe after core hydrogen exhaustion. We do not follow the evolution of the secondary component which is treated as point mass.

3. Results

The interaction of massive stars in binary systems may influence the 26Al yield in several respects. RLOF mass transfer is usually assumed to be not conservative, i.e., only some fraction β ($0 \leq \beta \leq 1$) of the transferred mass is accreted on the secondary. Only the fraction $1 - \beta$ of matter leaving the system contributes immediately to the 26Al abundance in the circumstellar medium. Fig. 1a shows the 26Al abundance in the ISM for our 50+45 M_\odot model as function of the remaining mass of the primary for various values of the parameter β. For $\beta = 0$ the 26Al abundance is very similar to that of a 50M_\odot single star that becomes a WR star through an LBV phase since both models loose their envelope shortly (compared to the lifetime of 26Al of $\sim 10^6$ yr) after core hydrogen exhaustion. Fig. 1a shows that the 26Al yield of a WR star binary component is possibly smaller than that of a single star of the same initial mass if this mass is above the mass limit for the LBV