MANAGEMENT OF THE DIFFICULT PEDIATRIC AIRWAY

F. A. Berry

The ASA Task Force on the Difficult Airway developed an algorithm for the management of the difficult airway (Figure 1). A difficult airway is characterized by difficulty in both ventilation and intubation of the patient. The algorithm is divided into two major pathways. One of these strongly suggests the use of awake intubation. However, the pediatric patient is not a candidate, for the most part, for an awake intubation. Therefore, the path of the algorithm for general anesthesia includes the uncooperative patient and the pediatric patient, since almost all of them require general anesthesia for intubation.

The basic principles of the algorithm for the difficult airway apply to the pediatric patient, as well. The repeated warnings of “get help” and “consider awakening the patient” are true for all age groups. The rest of this discussion will focus on identification of the child with the difficult airway and the subsequent management thereof (1).

The approach to the difficult airway will be discussed under three main headings: 1) the anatomy of the airway, and of intubation; 2) the physiology and pharmacology of the protective airway reflexes; and 3) the clinical management. In talking with parents, any history of a difficult intubation, etc., is a red flag. The history of a difficult anesthetic experience can never be ignored, regardless of what the anesthesiologist considers his/her level of skill, since there are skilled anesthesiologists everywhere. There are various methods used for predicting the difficult airway but, in general, they depend upon three things: 1) the ability to extend the neck; 2) the ability to open the mouth; and 3) laryngoscopy.

Laryngoscopy involves displacement of the soft tissue of the oropharynx, which allows a line of vision to be developed from the teeth or mandibular alveolar ridge to the epiglottis and then the larynx. The soft tissue is displaced into potential space that is encompassed and, therefore, potentially restricted by an incomplete bony ring that is bound posteriorly by the hyoid bone, laterally by the rami of the mandible, and anteriorly by the mentum of the mandible. Any alteration in the shape or
DIFFICULT AIRWAY ALGORITHM

1. Assess the likelihood and clinical impact of basic management problems:
 A. Difficult Intubation
 B. Difficult Ventilation
 C. Difficulty with Patient Cooperation or Consent

2. Consider the relative merits and feasibility of basic management choices:
 A. Non-Surgical Technique for Initial Approach to Intubation vs. Surgical Technique for Initial Approach to Intubation
 B. Awake Intubation vs. Intubation Attempts After Induction of General Anesthesia
 C. Preservation of Spontaneous Ventilation vs. Ablation of Spontaneous Ventilation

3. Develop primary and alternative strategies:

 A. AWAKE INTUBATION
 Airway Approached by Non-Surgical Intubation
 Airway Secured by Surgical Access
 Succeed
 FAIL
 Cancel Case
 Consider Feasibility of Other Options
 Surgical Airways

 B. INTUBATION ATTEMPTS AFTER INDUCTION OF GENERAL ANESTHESIA
 Initial Intubation Attempts Successful
 Initial Intubation Attempts UNSUCCESSFUL
 FROM THIS POINT ONWARDS REPEATEDLY CONSIDER THE ADVISABILITY OF:
 1. Returning to spontaneous ventilation.
 2. Awakening the patient.
 3. Calling for help.

 NON-EMERGENCY PATHWAY
 Patient Anesthetized, Intubation Unsuccessful, MASK VENTILATION INADEQUATE
 Alternative Approaches to Intubation
 Succeed
 Surgical Airways
 Surgery Under Mask Anesthesia
 Awaken Patient
 FAIL After Multiple Attempts
 One More Intubation Attempt
 IF MASK VENTILATION BECOMES INADEQUATE
 CALL FOR HELP
 FAIL
 Succeed
 Emergency Non-Surgical Airway Ventilation
 Emergency Surgical Airway
 Definitive Airway

 EMERGENCY PATHWAY
 Patient Anesthetized, Intubation Unsuccessful, MASK VENTILATION INADEQUATE
 Call For Help
 FAIL
 Succeed

Figure 1. Difficult airway algorithm.