Chapter 4

General technique for constructing linear RA for linear problems in Hilbert space

Speaking of linear ill-posed problems in Hilbert spaces, we henceforth bear in mind the two following particular problems:

Problem 1. Solve the operator equation

\[Az = u, \quad z \in Z, \quad u \in U \] \hspace{1cm} (4.1)

with a closed and, generally speaking, uninvertible operator \(A \). The domain of definition of \(A D_A \) is dense in \(Z \).

Problem 2. Calculate the values of closed unbounded operator \(A : Z \to U \)

\hspace{1cm} (4.2)

with a dense domain \(D_A \).

These two problems are closely related. The first of them may be formally reduced to the second if the inverse operator \(A^{-1} \) is appropriately defined. However, such an approach is not always fruitful due to different reasons. It proves more convenient to construct regularizing families \(R_\alpha \) independently for each of the Problems 1, 2. It is possible, for instance, to reduce the problem of differentiating a function (Problem 2) to the solution of integral equation of the first kind (Problem 1), but such a transfer...
is obviously unnecessary for regularizing the problem of differentiating. For the above reason we do not discuss the formal schemes universal for both problems, but rather investigate these problems separately.

4.1 General scheme for constructing RA for linear problems with completely continuous operator

Suppose that operator A in Problem 1 is completely continuous, and Z, U are separable Hilbert spaces.

Denote the spectrum of operator A^*A by $S(A^*A)$. It consists of eigenvalues of operator A^*A and zero point, $\lambda = 0$ not necessarily being the eigenvalue of A^*A. Since A^*A is positively defined, its spectrum $S(A^*A)$ belongs to the positive half of the axis of real numbers in a complex plane and consists of no more than a countable set of points λ_i. Let e_i be the eigenfunction of operator A^*A corresponding to the eigenvalue λ_i. The set of e_i constitutes an orthonormalized sequence in Z. Now we define a function of the operator A^*A. Let $\chi(\lambda)$ be a complex bounded function defined at $\lambda \in S(A^*A)$. The operator $\chi(A^*A)$ is defined by equation

$$
\chi(A^*A)f = \sum_{\lambda_i \neq 0} \chi(\lambda_i)(f, e_i)e_i + \sum_{\varepsilon, \in \text{Ker}(A^*A)} \chi(0)(f, e_i)e_i.
$$

In Eq. (4.3) we have separated summing over the eigenfunctions from Ker(A^*A) (if such functions exist). Eq. (4.3) defines a linear bounded operator, its norm being

$$
\|\chi(A^*A)\| = \sup_{\lambda \in S(A^*A)} |\chi(\lambda)|.
$$

To solve the problem given by Eq. (4.1) approximately, we should (in accordance with general concept described in Chapter 1) construct the family of bounded operators R_o which yields a pointwise approximation of mapping $G = A^{-1}$ generated by Eq. (4.1). In general, A^{-1} is a one-to-many mapping since we do not assume that Ker$A = \emptyset$. Henceforth (if the opposite is not explicitly stated) we assume that $G = A^{-1}$ is a one-to-one section of the above-mentioned mapping such that $Gu = \arg \min_{A^2u} ||z||$.

The value Gu given by the latter one-to-one mapping is also referred to as a normal (least norm) solution of Eq. (4.1). It is easy to see that a normal