THIRD ORDER NONLINEAR OPTICAL EFFECTS IN CONJUGATED POLYMERS

F. KAJZAR and J. MESSIER
CEA-DTA, DEIN/LPEM, CEN Saclay
91191 Gif-sur-Yvette - Cedex, France
1. INTRODUCTION

The conjugated quasi-one dimensional polymers are characterized by a strong delocalization of π electrons. This highly polarizable electronic cloud responds nonlinearly to the exiting external field. The resultant bulk polarization can be developed into the external field power series and its component along x is given by

\[P_x(t) = \sum_{y,z,u,...} \left(\chi^{(1)}_{xy} E_y(t) + \chi^{(2)}_{xyz} E_z(t) + \chi^{(3)}_{xyzu} E_u(t) + ... \right) \]

where \(\chi^{(1)}, \chi^{(2)} \ldots \chi^{(4)} \) are (n+1) rank tensors describing nonlinear optical response of the medium and \(E_y(t), E_z(t) \ldots E_u(t) \) are electric field components in y, z, ... u direction.

Conjugated polymers are principally centrosymmetric and \(\chi^{(2)} = 0 \); thus the first nonlinear term is described by \(\chi^{(3)} \) susceptibility. They are characterized by very large linear (\(\varepsilon > 30 \) at 0.625 μm and at 9K in polydiacetylene, Batchelder (1985)) and nonlinear polarizability (Sauteret et al. (1976)). The principal cubic nonlinear optical phenomena discussed here are listed in Table 1 together with corresponding nonlinear polarizations and susceptibility tensors. The relations given on RHS of Table 1 are true for every non static component of \(\chi^{(3)} \) tensor.

The bulk nonlinear susceptibility \(\chi^{(3)} \) is related to the corresponding microscopic molecular hyperpolarizability \(\gamma_{\alpha\beta\gamma\delta} \) where \(\alpha, \beta, \gamma, \delta \) are molecular directions. The relations between \(\chi^{(3)}_{xyzu} \) and \(\gamma_{\alpha\beta\gamma\delta} \) depends upon the symmetry of the molecular orientation distribution (cf. Flytzanis (1975)). In the particular case when the \(\gamma_{xxxx} \) component is enhanced along the polymer chain direction we have

\[\chi^{(3)}_{xxxx} = \frac{\nu \cdot N}{\varepsilon_0} \gamma_{xxxx} F \]

where \(\nu = \frac{1}{5} \) for an isotropic distribution of molecules in three dimensions (three-dimensional disorder)

\[\nu = \frac{3}{8} \]

for an isotropic distribution of molecules in a plane (two-dimensional disorder).

\(F \) is the local field factor which for cylindrical molecules is close to unity (cf. Cojan et al. (1977)).

\(N \) is the number of molecules per unit volume and \(\gamma_{xxxx} \) is the second order molecular hyperpolarizability.