CHAPTER 3
THE GALOIS THEORY OF PRIME RINGS

The contribution of the Galois theory for a class of rings is commonly understood as a proof of the principal correspondence theorem of definite types of finite (or reduced-finite) groups of automorphisms and those of subrings from a given class.

Let R be a ring, S a subring and G a group of automorphisms (i.e., a subgroup of the group of all automorphisms) of the ring R. An element $a \in R$ is called G-invariant if $a^g = a$ for every $g \in G$. A set of all G-invariants is denoted by R^G or by $\mathcal{I}(G)$. A set of all automorphisms for which the elements of S serve as invariants is denoted by $A(S)$. It is evident that $\mathcal{I}(G)$ is a subring of the ring R, and $A(S)$ is a group of automorphisms.

As was the case in the classical theory of fields, the group $A(S)$ is called a Galois group of the ring R over S. A subring S is called a Galois subring of R, and R is, respectively, a Galois extension of the ring S, if $S = \mathcal{I}(G)$ for a group of automorphisms G.

The correspondences $G \rightarrow \mathcal{I}(G)$ and $S \rightarrow A(S)$ invert the inclusion relations, i.e., if $G_1 \subseteq G_2$, then $\mathcal{I}(G_1) \supseteq \mathcal{I}(G_2)$ and if $S_1 \subseteq S_2$, then $A(S_1) \supseteq A(S_2)$. We also have

$$A(\mathcal{I}(G)) \supseteq G, \mathcal{I}(A(S)) \supseteq S,$$

which immediately yield

$$\mathcal{I}(A(\mathcal{I}(G))) = \mathcal{I}(G), A(\mathcal{I}(A(S))) = A(S).$$

Therefore, the mappings under discussion set a one-to-one correspondence between Galois groups and Galois subrings. And, hence, the groups $A(S)$ and the subrings $\mathcal{I}(G)$ are of primary interest in the Galois theory.

In order to prove the correspondence theorem in a class of rings \mathfrak{N},
it is necessary (and sufficient) to answer the following questions:

1. Under what conditions does a subring of fixed elements for a group G of automorphisms of a ring $R \in \mathfrak{R}$ belong to \mathfrak{R}?
2. When will a group G which obeys condition (1), be a Galois group?
3. Under what conditions is an intermediate ring $S \in \mathfrak{R}$, $l(G) \subseteq S \subseteq R$ a Galois subring?

An analogous approach is also possible for studying derivations. In this case the role of Galois objects is played by differential (restricted) Lie \mathfrak{g}-algebras and the subrings of constants of such algebras. In this case the same problems as for groups, i.e., (1) - (3) arise.

In the three chapters to follow we are going to develop the Galois theory for automorphisms and derivations in classes of prime and semiprime rings. As above, we shall consider a somewhat more general situation, assuming that the automorphisms lie in $A(R)$, while derivations in $D(R)$ (see 1.7).

3.1. Basic Notions

Let R be a prime ring, G be a group of automorphisms. It should be recalled that by Φ_g we denote a set of all elements $\varphi \in R_F$ such that $x\varphi = \varphi x^g$ for all $x \in R_F$ (see 1.7.5, 1.7.6). For these sets valid are the relations $\Phi_g \Phi_h \subseteq \Phi_{gh}$ (see formula (8) in 1.7) which, in particular, afford that Φ_g is a linear space over a generalized centroid of the ring R. Moreover, corollary 1.7.9 states that Φ_g will be nonzero iff g is an inner automorphism for Q.

3.1.1. Definition. The algebra of a group of automorphisms G is a C-algebra $B(G) = \sum_{g \in G} \Phi_g$.

Therefore, the algebra of the group has a basis of elements which correspond to the automorphisms which are inner for Q, i.e., it is an inner part of the group in a ring form.

If G is a finite group, then its algebra $B(G)$ will be finite-dimensional over C. Of a finite order will also be a factor-group G / G_{in}, where G_{in} is a normal subgroup of all inner for Q automorphisms.

3.1.2. Definition. A group G is called reduced-finite if its algebra $B(G)$ is finite-dimensional, while the factor-group G / G_{in} is finite. In this case the number $\dim_C B(G) \cdot |G / G_{in}|$ is called a reduced order of the group G.