STUDY OF MOLECULAR ORIENTATION AND MOLECULAR MOTION IN HIGH
MODULE POLYAMIDE FIBRES AND MICROPLASTICS BY MEANS OF NMR

V. PUTYSK, V. POPOV, S. KONEV, V. ISTOMIN, A. TOKAREV
The Urals Politechnical Institute
620002, Sverdlovsk, the USSR

ABSTRACT

Samples of polyamide fibres (yarns) on the basis of poly
(amide benzimidazole) (PABI) and poly(p-phenyleneterephthalate-
mine) (PPTA) have been researched by means of broad line NMR.
The same has been done as regards microplastics on the basis
of fibres PABI and epoxy resin EHD-MK and EDT-10. Orientation
and temperature dependences of the second moment of NMR
absorption line have been analysed, orientation factors of fi-
bre macromolecules and their change in plastics have been eva-
luated. It has been found that heat treatment of PABI fibres
has an influence on the orientation characteristics of NMR and
the quality of fibres and microplastics on their basis as well.

The main calculated value of NMR in fibres and plastics
being investigated is the second moment of absorption
spectrum M^2. Orientation dependences $M^2(\phi)$ have been treated
by the least squares according to the formula[1]:

$$M^2(\phi) = \sum_{e=0,2,4} C_e P_e(\cos \phi),$$ \quad (1)

where C_e is structural coefficients, P_e is Legendre's
polynomials, ϕ is an angle between the axis of a fibre and the
vector of a magnetic field.

Theoretical expression for C_e in the model of "rigid"
lattice (That is, no molecular motions) can be given as

$$C_e = \frac{9}{2N} \delta^2 h^2 C_e P_e(\cos \psi) S_e,$$ \quad (2)

$$S_e = \sum_{d=0} r_{d}^{-6} P_e(\cos \Theta_{d})$$ \quad (3)
where a_i is coefficients, S_e is lattice sums, θ_{K} is an angle between the axis of fibrilla and internuclear vector θ_{K}. The dash above in $P_e(\cos \psi)$ means averaging of fibrilla orientation in fibre:

$$\bar{P}_e(\cos \psi) = \int_{0}^{\pi} P_e(\cos \psi) P(\psi) \sin \psi \, d\psi,$$

$P(\psi)$ is a function of an angle distribution between the axis of a fibre and that of a fibrilla. In case of a "soft" lattice (intensive molecular motions) it is necessary to average heat motions before the operation of orientation averaging.

Heat motion averaging can be only fulfilled for concrete molecular models.

Calculation of coefficients C_e for "rigid" lattice and ideal fibrilla orientations ($P_e = 1$) for intramolecular contribution (intermolecular contribution in M_2 is assumed to be isotrope) gives the following values (in squared oersteds, for interproton distance in aromatic rings $t_{HH} = 2.38$ Å):

- $C_0 = 2.07$;
- $C_2 = 2.56$;
- $C_4 = 4.12$ for PABI and $C_0 = 2.07$;
- $C_2 = 2.76$;
- $C_4 = 5.11$ for PPTA.

Actual fibrilla orientation is expressed by orientation factors P_e:

$$P_e(\cos \psi) = \frac{C_e}{C_e}(\theta_{K}),$$

where C_e and $C_{e'}$ are experimental and calculated values of structural coefficients respectively. Thus, it is possible to compare the obtained parameters P_e with the acoustic factor of Hermans' orientation [2]:

$$I_e = \frac{(1 - E_I/E_A)/(1 - E_I/E_K).}$$

where E_I, E_A, E_K are elasticity dynamic modules of polymer isotrope and anisotrope structures respectively, and theoretical value of a particular polymer chain determined by its mechanical characteristics. For the fibres being investigated $E_I \approx 10-25$ GPa, $E_K \approx 220-240$ GPa. The results are shown in table 1. The factor P_2 is well agreed with the orientation parameters, obtained by means of X-ray diffraction and acoustic I_e.

It should be noted that the fact of twofold growth P_4 under heat treatment PABI is correlated with the increase of fibre strength and its dynamic module E_A, which can be explained supposed by improving macromolecule orientation in fibre. Unlike liquid crystals (which the fibres PPTA are also referred to), whose orientations are completely determined by factor P_2 (the "near" order), in fibres PABI under heat treatment, there is a structural transition, accompanied by appearing "paracrystalline" structure (the "distant" order), which is likely to be the cause of such a great change of factor P_4.

It has been found that for the fibres PPTA there is a convertibility of temperature dependences $M_2(T)$ and $C_2(T)$, $C_4(T)$ till the temperatures of polymer ($T \approx 400^\circ C$) destruction, which confirms the stability of their structure, formed in spinning solution.