The employment of molecules, not atoms, as a basic building block to construct solids has lead to the development of new classes of materials exhibiting commercially useful properties.1,2 These include electrical conductivity, ferroelectricity as well as magnetic ordering. Molecules, in contrast to atoms, enables the modulation of the commercially useful properties by low-temperature organic-synthesis methodologies, that can lead to the improvement of the properties, and lead to the development of materials with a combination of properties that will expand their desirability. Herein, we focus solely upon work related to molecule-based magnets. Molecule-based magnets are defined as substances prepared from molecules (or molecular ions) that maintain aspects of the parent molecular framework, and magnetically order.

Harden H. McConnell in 1963 suggested a mechanism for ferromagnetic coupling between radicals that required a specific spatial arrangement.3 In 1967 McConnell discussed another approach for stabilizing ferromagnetic coupling between radicals that involved the admixing of a charge transfer excited state into the ground state.4 Although these models only discussed ferromagnetic coupling between a pair of radicals, not magnetic ordering, experimental research focused toward the testing these models began to appear more than a decade latter.5, 6

H. Hollis Wickman, Anthony M. Trozollo \textit{et al.} reported in 1967 that $S = 3/2$ ClFe$^{III}(S_2CNEt)_2$ 1, was a ferromagnet with a critical or magnetic ordering temperature, T_c, of 2.46 K.7 R. L. Martin and co-
workers at the University of Melbourne in 1970 reported that another \(S = \frac{3}{2} \) complex, manganese phthalocyanine, 2, was a ferromagnet.\(^8\) However, in 1983 William E. Hatfield's group showed that it was a canted-ferromagnet with 8.3 K \(T_c \).\(^9\) Claudine Veyret and co-workers in 1973 reported that bis(2,2,4,4-tetramethyl-4-piperidinol-1-oxyl), 3, tanol suberate, was a ferromagnet with a \(T_c \) of 0.38 K.\(^10\) Additional data led to the characterization of tanol suberate as being a metamagnet, \(i.e., \) it had an antiferromagnetic ground state; however, above a critical applied magnetic field of 100 Oe and below a \(T_c \) of 0.38 K it had a high moment, ferromagnetic-like state.\(^11\) In 1979 \([\text{Fe}^{III}(\text{C}_5\text{Me}_5)_2][\text{TCNQ}] \) \(\text{TCNQ} = 7,7,8,8\text{-tetracyano-p-quinodimethane}, 4\), \([5][4]\), was characterized to be a metamagnet below the \(T_c \) of 2.55 K with a critical applied magnetic field of 1600 Oe.\(^12\)