A NEW MATRIX DECOMPOSITION FOR SIGNAL PROCESSING

F.T. LUK
Department of Computer Science
Rensselaer Polytechnic Institute
Troy, New York 12180, USA
luk@cs.rpi.edu

S. QIAO
Communications Research Laboratory
McMaster University
Hamilton, Ontario L8S 4K1, Canada
qiao@maccs.dcss.mcmaster.ca

ABSTRACT. We extend the generalized singular value decomposition to a new decompo­
sition that can be updated at a low cost. In addition, we show how a forgetting factor can
be incorporated in our decomposition.

KEYWORDS. ULV decomposition, generalized SVD, updating, forgetting factor, signal
processing.

1 Problem definition

A recurring matrix problem in signal processing concerns generalized eigenvalues:

\[A^T A x = \lambda B^T B x, \]

where \(A \) is \(n \times p \), \(n \geq p \), \(B \) is \(m \times p \), and \(m \geq p \). We assume further that the matrix \(B \) has
full column rank. Often, the generalized eigenvalues, call them \(d_j^2 \)'s, satisfy this property:

\[d_1^2 \geq d_2^2 \geq \cdots \geq d_{p-k}^2 \gg d_{p-k+1}^2 \approx \cdots \approx d_p^2. \]

The \(k \)-dimensional subspace spanned by the eigenvectors corresponding to the \(k \) smallest
generalized eigenvalues is called the noise subspace. We are interested in the following
problem.

Noise Subspace Problem. Compute an orthonormal basis for the noise subspace.
2 ULLV decomposition

This problem has a known solution for the special case where \(B = I_p \), where \(I_p \) denotes a \(p \times p \) identity matrix. Compute a singular value decomposition (SVD) of \(A \):

\[
A = U D_A V^H,
\]

where \(U \) is \(n \times p \) and orthonormal, i.e., \(U^H U = I_p \), \(V \) is \(p \times p \) and unitary, \(D_A \) is diagonal and \(D_A = \text{diag}(d_1, \ldots, d_p) \). From (1) we get

\[
d_1 \geq d_2 \geq \cdots \geq d_{p-k} \gg d_{p-k+1} \approx \cdots \approx d_p \geq 0,
\]

and the desired orthonormal basis is given by the last \(k \) columns of \(V \). However, the SVD is not amenable to efficient updating when a new row is added to \(A \). A clever procedure was devised by Stewart [2] in the form of the ULV decomposition (ULVD):

\[
A = U L_A V^H,
\]

where \(U \) is orthonormal and \(V \) unitary as in the SVD, but the middle matrix \(L_A \) is lower triangular and essentially block diagonal. In particular,

\[
L_A = \begin{pmatrix}
\hat{L}_A & 0 \\
E & K
\end{pmatrix},
\]

where

(i) \(\hat{L}_A \) and \(K \) are lower triangular and \(\hat{L}_A \) is \((p-k) \times (p-k) \);

(ii) \(\sigma_{\min}(\hat{L}_A) \approx d_{p-k} \) and \(||E||^2 + ||K||^2 \approx d^2_{p-k+1} + \cdots + d^2_p \).

By \(\sigma_{\min}(M) \) we mean the smallest singular value of a matrix \(M \), and by \(||M|| \) we refer to the Frobenius norm of the matrix \(M \). Essentially, Stewart showed that to separate out the noise subspace from the signal subspace, it suffices to reduce \(A \) to the 2 \(\times \) 2 block lower triangular form \(L_A \), where both \(E \) and \(K \) are very small in norm. The last \(k \) columns of \(V \) provide an orthonormal basis for the noise subspace.

In this paper we consider the noise subspace problem for the general case where \(B \neq I_p \). First, the problem may be solved via the generalized SVD (GSVD):

\[
A = U_A D_A L V^H \quad \text{and} \quad B = U_B L V^H,
\]

where \(U_A \) is \(n \times p \) and orthonormal, \(U_B \) is \(m \times p \) and orthonormal, \(V \) is \(p \times p \) and unitary, \(L \) is \(p \times p \) and lower triangular, and \(D_A = \text{diag}(d_1, \ldots, d_p) \). If the generalized singular values \(d_j \)'s satisfy (2), then the last \(k \) columns of \(V \) provide a basis for the noise subspace.

We propose here a generalized ULVD (ULLVD):

\[
A = U_A L_A L V^H \quad \text{and} \quad B = U_B L V^H,
\]

where \(U_A, U_B, V \) and \(L \) are just as in the GSVD. The new middle matrix \(L_A \) has the same form as in (3) and the desired orthonormal basis is given by the last \(k \) columns of \(V \).