5S-rRNA genes in rice embryos

N. Hariharan, P. S. Reddy and J. D. Padayatty
Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India

Received 4 September 1986; accepted in revised form 3 July 1987

Key words: gene, rice embryos, 5S-rRNA, transcription

Abstract

The 5S-rRNA from the ungerminated and 48-h-germinated rice embryos differs from the wheat, rye and maize by two nucleotides. The 48-h-germinated embryos contain another species of 5S-rRNA which differs by 3 nucleotides from the ungerminated embryos, thereby showing the expression of two 5S-rRNA genes during germination. The 5S-rRNA genes are present in tandem repeats of a 0.3-kb sequence with some length heterogeneity in the rice genome. The 5S-rRNA gene that was sequenced is identical to that of wheat and maize, except for two nucleotides, C and T, which are interchanged at positions 107 and 117. The insert of continuous 5S-rRNA gene in pBR322 was transcribed in vitro much more efficiently than the discontinuous gene. There was no homology between the 184-bp spacer sequence of 5S-rRNA genes in rice and other systems except the presence of the oligo(T) transcription terminator sequence.

Introduction

Nucleotide sequence analysis of 5S-rRNA from a wide variety of eukaryotes has revealed a highly conserved primary structure [9]. To follow the expression of 5S-rRNA genes in rice embryos, the nucleotide sequence of 5S-rRNAs isolated from dormant and germinated embryos were determined. In most eukaryotes, the genes for 5S-rRNAs are organized as separate clusters of tandem repeats consisting of a highly conserved gene sequence with a variable non-transcribed spacer [14]. Even though a wealth of information is available on the structure and expression of 5S-rRNA genes of lower eukaryotes and animals, relatively little is known on higher plants with the exception of wheat, rye, flax, tobacco, maize and yellow lupin [1, 2, 5, 12, 16, 22]. To study the structure and regulation of expression of 5S-rRNA genes in rice embryos, we have cloned, sequenced and transcribed in vitro a BamHI repeat unit of 0.3-kb DNA carrying a 5S-rRNA gene.

Materials and methods

Preparation of rice DNA

DNA from the germinated rice (Oryza sativa L., IR-20) embryos was isolated according to Walbot and Goldberg [33]. The spooled DNA obtained after ethanol precipitation was dissolved in 10 mM Tris-HCl, 1 mM ethylenediaminetetraacetate, pH 7.4, and further purified by gel filtration on a Biogel A5m column.

Purification of 5S- and 5.8S-rRNAs and tRNA

Ribosomes from 48-h-germinated rice embryos were isolated and the 5S- and 5.8S-rRNAs were extracted and purified according to the method of Rubin [23]. Total tRNA was isolated from the cytosolic RNA according to the method of Gestaland et al. [11], separated by electrophoresis on 10% polyacrylamide gel
containing 7 M urea using tRNA from yeast as internal marker, and eluted.

Enzyme digestion

Restriction endonuclease digestions of DNA were done as described in the supplier’s manual.

Southern hybridization

DNA fragments were separated by agarose gel electrophoresis and transferred onto nitrocellulose filter according to Southern [28]. Baking at 80°C for 6–8 h was done to increase the retention of DNA fragments smaller than 0.5 kb [25]. DNA was labelled with [α-32P]dATP by nick-translation and used as probes for hybridizations. Hybridizations were carried out in 50% (v/v) formamide, 5 x SSC (1 x SSC is 0.15 M NaCl, 15 mM sodium citrate, pH 7) and 0.1% sodium dodecyl sulphate (SDS) as described by Maniatis et al. [17]. Filters were washed twice at room temperature with 2 x SSC, twice at 50°C with 1 x SSC and at 65°C with 0.5 x SSC and 0.1% SDS and subjected to autoradiography at −70°C for 24 h.

Cloning

BamHI digested rice DNA was separated on 0.75% agarose gel and DNA fragments of size smaller than 1 kb were eluted and cloned in plasmid pBR322 at the *BamHI* site [29]. Such small-size DNA fragments may carry 5S-rRNA genes as *BamHI* fragments of DNA from wheat [5], rye [1] and maize [16] of less than 0.5 kb contained the 5S-rRNA gene. *E. coli* HB 101 was transformed and the recombinant clones were screened for 5S-rRNA genes by the method of Grunstein and Wallis [13] using (5'-32P)5S-rRNA. The plasmid bearing the 0.3-kb insert was labelled as pIR5S-201, which produced two fragments of size 4.36 and 0.3 kb on digestion with *BamHI*.

Plasmid pBR322 DNA was digested with *BamHI* and the ends were filled by using Klenow fragment of *E. coli* DNA polymerase I. The 0.3-kb insert DNA which has a single site for *AluI* was digested with the enzyme and ligated using T4 phage DNA ligase. The cohesive end ligation is at least 100 times more efficient than blunt end ligation [17]. The end-to-end ligated *AluI* fragments of the 0.3-kb DNA were inserted at the filled *BamHI* site of pBR322 by blunt end ligation. Transformants obtained from such molecules were screened by the analysis after digestion with *BamHI*, which yielded only a linearised molecule of size 4.66 kb and was labelled as pIR5S-202.

RNA sequencing

The 32P-end-labelled RNA was sequenced by the enzymic method according to the supplier’s manual (P.L. Biochemicals, Inc.). The G, A, U + C and A + U specific cleavages were done with RNase T1, *B. cereus*, U2 and Phy M respectively [7] by incubating the 5’-end-labelled RNA with 1 unit of the enzyme in the presence of carrier yeast tRNA at 55°C for 10 min. For limited hydrolysis, the 32P-RNA was incubated with 50 mM Na2CO3/NaHCO3 buffer at pH 9.0 in the presence of yeast RNA at 90°C for 6 min. The samples were quick-chilled in ice, the loading buffer was added and analysed by 8 M urea−20% polyacrylamide gel electrophoresis using 50 mM Tris−50 mM boric acid−1 mM ethylenediaminetetraacetate, pH 8.3. At the end of the run, the gel was transferred onto a plastic sheet, covered with Saran wrap and subjected to autoradiography at −70°C.

DNA sequencing

Plasmid DNA was prepared from the clone following the procedure of Birnboim and Doly [3]. The insert 0.3-kb DNA was prepared, labelled at the 5’ ends, restricted with the single cut enzyme, *AluI*, separated by 12% polyacrylamide gel electrophoresis, isolated and sequenced according to the method of Maxam and Gilbert [19]. Alternatively the insert DNA was cloned in phage M13mp19 RF DNA at the