Technical communication

Sensitivity of the relative F_{pl} level of chlorophyll fluorescence induction in leaves to the heat stress

Tomas Klinkovsky & Jan Naus
Department of Experimental Physics, Faculty of Sciences, Palacky University, Tr. Svobody 26, 77146 Olomouc, Czech Republic

Received 25 May 1993; accepted in revised form 25 October 1993

Key words: automatic determination, fluorescence parameters, fluorometer, induction curve, photosynthesis

Abstract

The $(F_{pi} - F_o)/F_v$ value of the fluorescence induction curve is shown to be a more suitable parameter to detect a wider range of heat stress damage to thylakoid membranes as compared to quantities $t_{1/2}$ (time of fluorescence rise from F_o to $(F_o + F_m)/2$ level) and τ (the fluorescence induction time defined as the area above the induction curve normalized to $F_v = 1$). A method for exact and automatic F_{pl} determination is presented.

A break point in the quality and behaviour of the fluorescence induction curve of barley leaves incubated at 49 °C was reached at the moment (about 240 s) when the transformation of PS II active (Q_B-reducing) to PSII inactive (Q_B-non-reducing) centres was completed. The meaning of the standard F_v and F_v/F_m parameter was then changed.

The method of F_{pl} determination described here may help to increase the analytical value of the standard chlorophyll fluorometers.

Abbreviations: F_o—initial fluorescence; F_m—maximal fluorescence; F_{pi}—fluorescence at first inflection point ('plateau'); F_v—variable fluorescence ($F_v = F_m - F_o$); PSM—plant stress meter; SD—standard deviation

Introduction

The measurement of the chlorophyll fluorescence induction curve is a very useful method for detection of changes in the stress state of the photosynthetic apparatus. Many empirical parameters have been derived from the induction curves—the one most frequently used is the F_v/F_m ratio, interpreted as a measure of the quantum efficiency of PS II photochemistry (Krause and Somersalo 1989, Schreiber et al. 1989, Krause and Weis 1991, Öquist and Hunner 1991). This interpretation of the F_v/F_m value brings no direct information on the heterogeneity of PS II. Some other parameters, however, are in some cases (Naus and Melis 1992) more sensitive indicators of stress and contain information about PS II heterogeneity—especially parameters based on the measurement of the F_{pl} value (Fig. 1).

The advantage of the F_{pl}-related parameter $(F_{pl} - F_o)/F_v$ is its clear interpretation as a measure of PS II Q_B-non-reducing centres (Guenther and Melis 1990). The existence of the plateau as a characteristic property of the induction curve has been substantiated theoretically (Malkin 1966, Baake and Schlöder 1992).

Sometimes, the F_i value, as the first local
maximum or shoulder, is measured instead of F_{p2} and used in stress-related studies (Neubauer and Schreiber 1989, Leverenz et al. 1990). Cao and Govindjee (1990) have brought evidence for the interpretation of the OID phase of fluorescence induction as representing the Q_A reduction in PSII inactive centres. Similarly, evidence of PSII heterogeneity with respect to the electron transport and fluorescence properties was documented by, e.g. Briantais et al. (1988) and Chylla and Whitmarsh (1989) and surveyed by Govindjee (1990).

Whereas the F_o, F_v and F_m values are measured automatically by commercial instruments, the F_{pl} must be evaluated by a different method. One of these methods (but only an approximate one) was described by Shaw et al. (1986).

In this paper, we suggest an unambiguous way for the determination of F_{pl} as the first inflection point in the fluorescence induction curve. The F_{pl} is then defined as a local minimum of the first derivative of the original induction curve (Fig. 1a and b). The method might be of value especially in measurements with whole leaves where the chemical method using FeCN for F_{pl} determination (Melis 1985) cannot be used effectively. An example of F_{pl} determination is presented for the case of heat damage to PSII centres upon incubation of barley leaves at 49 °C.

Materials and methods

Seedlings of spring barley (Hordeum vulgare L., cv. Zenit) were grown in a cultivation chamber under a light intensity of 100 μmol m$^{-2}$ s$^{-1}$ at the regime – light 16 h (22 °C) and dark 8 h (18 °C). After 10 days, in the growth phase of the second leaf (1.2 according to the Feekes macrophenological scale) the central segment (adaxial side) of the primary leaf was used for measurements.

The central segment of the primary leaf blade was excised and immersed in the dark in distilled water of a constant temperature of 49 °C for a time interval from 1 s to 1 h.

The fluorescence induction curve at room temperature was detected using the Plant Stress Meter manufactured by Biomonitor AB S.C.I. (Umeå, Sweden) (Oquist and Wäss 1988). A recording time of 1 s and photon flux density of 400 μmol m$^{-2}$ s$^{-1}$ were used. The parameters F_o, F_m, F_v, F_v/F_m and $t_{1/2}$ are displayed after each measurement. Before measurements, the leaves were dark-incubated for at least 15 min. The fluorescence induction curves were transferred from the memory of the PSM to a personal computer (PC-AT) for further analysis. To load the recorded signal from PSM, a 14 bit A/D converter was used (Super-Lab Card PCL-714 by Advantech Co., Ltd.). The sampling frequency was 7.877 Hz, the number of digital samples was 512.

Determination of the induction parameters F_{p1} and \bar{t}

The originally loaded fluorescence induction curve was filtered by a floating average filter (width 15 samples). The first derivative was calculated and filtered again with the same filter. The F_{pl} parameter was evaluated by iterative algorithm from the curve as a fluorescence level at the first inflection point (e.g. at the first local minimum at time t_{pl} on the curve of the first derivative – see Fig. 1b).