Total recovery of O_2 evolution and nanosecond reduction kinetics of chlorophyll-a$_{II}^+$ (P-680$^+$) after inhibition of water cleavage with acetate

Ö. SAYGIN, S. GERKEN, B. MEYER and H.T. WITT
Max-Volmer-Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 1000 Berlin 12, BRD

(Received 24 September 1985)

Abstract. Oxygen evolution and reduction kinetics of the photooxidized Chl-a$_{II}^+$ have been measured in oxygen-evolving complexes from the thermophilic cyanobacterium Synechococcus sp.

1. Incubation of PS II particles with acetate resulted in an inhibition of oxygen evolution and a retardation of the Chl-a$_{II}^+$-reduction kinetics from the nanosecond range to the microsecond range, indicating a modification of the donor side of photosystem II (PS II).

2. After the first two flashes given to a dark-adapted, acetate treated sample, Chl-a$_{II}^+$ was re-reduced with a half-life time of 160 μs by a component of the donor side of PS II. Under repetitive excitation Chl-a$_{II}^+$ was re-reduced in 500 μs by electron back reaction from the primary acceptor Q$_A$ (X-320$^-$). Obviously, in the presence of acetate only two electrons are available from the donor side.

3. Both oxygen evolution and nanosecond reduction kinetics of Chl-a$_{II}^+$ were restored to the control level when acetate was removed.

4. The results indicate a tight coupling between O_2 evolution and nanosecond reduction kinetics of Chl-a$_{II}^+$.

5. The reversible inhibition is probably due to a replacement of Cl$^-$ by acetate within the water splitting enzyme.

6. Due to its strongly retarded kinetics, the reversibly modified system may facilitate investigations of the mechanism of the donor side.

Abbreviations

Chl, chlorophyll; PpBQ, phenyl-p-benzoquinone; PS, photosystem

Introduction

The fundamental reaction for water cleavage in photosynthesis is the photo-oxidation of Chl-a$_{II}^+$ (P-680$^+$) [7,8]. Light excitation of Chl-a$_{II}^+$ leads to the transfer of one electron to the first stable acceptor, a special plastoquinone, Q$_A$ (X-320$^-$) [25, 26]. The photooxidized Chl-a$_{II}^+$ extracts, via electron carriers, an electron from the O_2-evolving complex. In four single turnover flashes the complex runs through four oxidation states, S_0 to S_3, ultimately ending in the cleavage of 2 H$_2$O into 4 H$^+$ and one O_2. The kinetics of the
Chl-a+ reduction are a function of the S-states: the Chl-a+ reduction correlated with the S_0 and S_1 states occurs within 23 ns; whereas, in states S_2 and S_3 a biphasic reduction with 50 ns and 260 ns is observed [2]. The retardation of the electron transfer times in states S_2 and S_3 was explained by Coulombic attraction due to an excess positive charge in states S_2 and S_3 [2]. The existence of a positive surplus charge in states S_2 and S_3 has been shown independently by corresponding electrochromic signals [17, 18]. Under repetitive flash excitation a multiphasic Chl-a+ reduction is observed [3, 9, 20]. This has been explained quantitatively by a superposition of the individual kinetics correlated with the S_0-S_3 states [2, 21].

The electron transport from H\textsubscript{2}O to an artificial acceptor can be blocked more or less reversibly through different types of treatments (Cl- depletion [11] (for review see [5], protein removal [1-10, 12-15], or bicarbonate depletion [23, 28]. In PS II reaction centers in which oxygen evolution was blocked by various treatments, the nanosecond reduction kinetics of Chl-a+ disappear and Chl-a+ is reduced slowly in the time range of microseconds [1,3,27].

Incubation with formate or acetate under a CO\textsubscript{2}-free atmosphere is a currently used tool for bicarbonate depletion, resulting in a reversible retardation of the electron transfer kinetics both from Q_A to Q_B and from Q_B to the PQ-pool by a factor of about 10 (for recent reviews of bicarbonate depletion see [23, 28]). There is disagreement whether or not bicarbonate depletion also acts – to a minor extent – at the donor side of PS II [23, 28]. Acetate has also been used in experiments together with Cl--depletion [11, 22]. In our experiments the acetate concentration was 660 mM in the presence of 15 mM Cl-. Under these conditions a complete inactivation of oxygen evolution and a retardation of the reduction kinetics of Chl-a+ to the microsecond time range have been observed. After the removal of acetate, O\textsubscript{2} evolution was totally restored together with the reappearance of the nanosecond reduction of Chl-a+.

Materials and methods

PS II particles from Synechococcus sp. were prepared according to Schatz and Witt [19] and stored at 193 K in the dark. Under repetitive flash illumination oxygen evolution was measured with a Clark-type electrode. Single flash as well as repetitive flash-induced oxygen evolution was measured with a Zirconia oxygen sensor. Flash-induced absorption changes at 824 nm were measured using a spectrophotometer essentially described in [3] with variations described in [2]. The fluorescence artifact was negligible. At 820 nm we observed an additional light-induced absorption change in flash numbers higher than 2 (10–25% of the total signal) which was not related to Chl-a+. Simultaneous measurements at 334 nm and 824 nm were performed with a spectrophotometer similar to the one described in [26].