Variability in storage potential of banana shoot cultures under medium term storage conditions

Ines Van den houwe1, Kris De Smet1, Hugues Tezenas du Montcel2 & Rony Swennen1
1INIBAP Musa Germplasm Transit Centre, c/o Laboratory of Tropical Crop Husbandry, Catholic University of Leuven (K.U. Leuven), K. Mercierlaan 92, 3001 Heverlee, Belgium; 2CIRAD-FLHOR, B.P. 5035, 34032 Montpellier cedex 1, France

Received 27 July 1994; accepted in revised form 23 June 1995

Key words: Conservation, low temperature, Musa

Abstract

Shoot cultures of 401 banana clones were conserved under slow growth conditions (16 ± 1 °C, 25 μmol m⁻² s⁻¹). Storage duration - defined as 60 % survival time of 20 shoot cultures of a clone - averaged 334 days. However, large differences occurred among the different genomic (sub)groups and even within the same (sub)group. East-African highland bananas and non-plantain AAB bananas can be stored for significantly longer periods. Shoot tip cultures of another 41 banana clones conserved at higher ambient temperature (22 ± 3 °C) needed to be subcultured sooner (every 220 days on average).

Abbreviations: BA – 6-benzyladenine, CIRAD – Centre de Coopération Internationale en Recherche Agronomique pour le Développement, IAA – indole-3-acetic acid, IBPGR – International Board for Plant Genetic Resources, INIBAP – International Network for the Improvement of Banana and Plantain, PPF – photosynthetic photon flux, QDPI – Queensland Department of Primary Industries

Introduction

Bananas and plantains (Musa spp.) are among the most important food crops in the world. They are a staple food for at least 400 million people and an important part of the diet of another 600 million people in the tropics (estimations based on FAO 1992). Moreover, they are a substantial export commodity for several tropical countries.

There exists a wide range of genetic variability in Musa in morphological and physiological characteristics and in culinary uses (for cooking, roasting, raw consumption or beer production) (Simmonds 1966). Inter- and intraspecific hybridizations between the wild species Musa acuminata Colla (AA genome) and Musa balbisiana Colla (BB genome), both originating from Southeast Asia, have generated the genomic constitutions of the edible cultivars, with the AA diploids and the AAA, AAB and ABB triploids being the most important ones (Simmonds & Shepherd 1955). Within the AAA group, the East-African highland bananas constitute a very distinct subgroup. Plantains, on the other hand, form a well-defined subgroup among the AAB bananas (Simmonds 1966).

It is generally agreed that the preservation of the naturally occurring variability in crops is of tremendous importance for mankind (Ford-Lloyd & Jackson 1986). Since bananas do not normally set seed, they are often conserved in field gene banks, which require much land and labour due to the large size of these plants. Due to their exposure to pests and diseases, and thus constant risk of loss, the establishment of in vitro collections consisting of shoot cultures started from meristems is an attractive alternative for working collections or collections for long-term conservation. In our working collection, shoot cultures need to be subcultured at 2–5-month intervals if maintained at 28 °C and 63 μmol m⁻² s⁻¹. It has been shown that a reduced temperature (15 °C) and PPF (25 μmol m⁻² s⁻¹ for 24 h) significantly increased the subculturing
interval (Banerjee & De Langhe 1985; De Smet & Van den houwe 1991). However, these growing cultures are permanently threatened by the occurrence of somaclonal variation (Vuylsteke et al. 1991; Côte et al. 1993), which might ultimately result in the loss of valuable germplasm. The arrest of growth by freeze preservation would simultaneously overcome this limitation and reduce the workload. Methodologies for cryopreservation in liquid nitrogen of Musa embryogenic cell suspensions have been established (Panis et al. 1990), but the production of embryogenic cell suspensions takes from 6 up to 12 months and is genotype dependent (Dhed’a et al. 1991; Escalant & Teisson 1993). Cryopreservation of Musa apices is under investigation and has shown a survival rate of 7–58% only (Panis et al. 1994; Panis 1995). Cryopreservation of zygotic embryos of banana (Mora 1990) and freeze-preservation of DNA-rich materials in general (Adams 1994) could be envisaged.

INIBAP (Montpellier, France) currently maintains its Musa working collection consisting of 1015 accessions (INIBAP 1992) at the INIBAP Transit Centre at the Catholic University of Leuven. All germplasm is kept in vitro to allow a quick supply of germplasm upon request. Currently nearly one accession per working day is supplied to collaborators worldwide.

Growth of banana shoot cultures can be slowed down by changing osmotic conditions of the culture medium (Mora et al. 1988). However, the most successful and most widely applied approach to slow in vitro growth in crops is the reduction of temperature (Withers 1992). Several crops have shown genotypic differences (both on the species and on the cultivar level) in storage potential at low temperature, such as coffee (Bertrand-Desbrunais et al. 1991), strawberry (Reed 1991), beet (Miedema 1982), apple (Wilkins et al. 1988), grape (Barlass & Skene 1983) and yam (Malaurie et al. 1993).

Here we report the performance of more than 400 Musa accessions stored as shoot cultures under limiting growth conditions. The effect of genotype on storage duration is discussed.

Materials and methods

Cone-shaped shoot tips of 8–10mm were isolated from small sword suckers that arrived at the INIBAP Musa Germplasm Transit Centre. For each accession shoot cultures were initiated from one single meristem on a semi-solid (2 g 1⁻¹ Gelrite) Murashige & Skoog (1962) medium with the exception of a double phosphate concentration (400 mg 1⁻¹ KH₂HPO₄) and supplemented with 10⁻⁶ M IAA and 10⁻⁵ M BA and subsequently multiplied to obtain a clone of 20 cultures. Accessions reacted nevertheless differently. Some accessions produced mainly single plants, while others consisted of clusters of many small buds. In the storage room, individual cultures were inspected monthly and those that had become necrotic were eliminated. As soon as only 12 clean and viable cultures of an accession remained, the most vigourous and green ones were multiplied to produce, 20 new cultures and grown in normal growth conditions (30 ± 2 °C, 63 μmol m⁻² s⁻¹) for 1 to 2 weeks. Storage time is thus defined as the period between the transfer of 20 cultures of an accession into the cold storage room and the removal of 12 cultures for subsequent multiplication.

The storage facilities consisted of two compartments, which differed in ambient temperature: 16 ± 1 °C (compartment A) and 22 ± 3 °C (compartment B). In both compartments the PPF was 25 μmol m⁻² s⁻¹. In compartment A, 401 accessions with known genomic configuration were stored. Their storage duration was calculated by averaging two subsequent storage periods. In compartment B, only one storage time was determined for 41 other accessions. The age of the shoot cultures (i.e. the time after their introduction in vitro) ranged from 1 to 8 years.

It should be noted that contamination was sporadic and thus could have shortened storage time. However, since it appeared at random, no effect on genotypic differences nor on differences due to ambient temperature was anticipated.

Results

Temperature may play a crucial role in storage duration (Table 1). Indeed, average storage duration per genotype was extended from 57 days (for the AA edible cultivars) to 175 days (for the plantains) when stored at 16 ± 1 °C instead of 22 ± 3 °C. However, these values are indicative, since different accessions per genotype are involved at both temperatures. Therefore no statistical comparison was made.

Under the best storage temperature (16 °C) large differences were noted among the accessions evaluated (Fig. 1). Some accessions can be stored up to a maximum of 615 days (Lady Finger - Pome, AAB), whereas others needed to be subaculturated every 60