On Saint-Venant's problem for elastic dielectrics

D. IEŞAN
Department of Mathematics, University of Iaşi, 6600 Iaşi, Romania

Received 18 June 1987; accepted 21 July 1987

Abstract. The equilibrium theory of linear piezoelectricity is considered. Saint-Venant's problem for a homogeneous and anisotropic piezoelectric cylinder is studied.

1. Introduction

The importance of Saint-Venant's celebrated memoirs [1, 2] on what has long since become known as Saint-Venant's problem, requires no emphasis. Indeed, a comprehensive bibliography of the vast and varied literature to which the work contained in [1, 2] has given impetus would multiply the length of this study. We recall that Saint-Venant's problem consists in determining the equilibrium of an elastic cylinder, loaded only by surface forces distributed over its plane ends. Saint-Venant's approach to the problem is based on a relaxed statement in which the pointwise assignment of the terminal tractions is replaced by prescribing the corresponding resultant force and resultant moment. In [3], we have established a simple method of deriving Saint-Venant's solution. The advantage of this method is that it does not involve artificial a priori assumptions and offers a rational scheme to obtain Saint-Venant's solution.

In this paper an adaptation of the method of [3] is used to study the relaxed Saint-Venant's problem within the linear theory of elastic dielectrics.

2. Preliminaries

Throughout this paper \mathcal{B} denotes the interior of a right cylinder of length h with the open cross-section Σ and the the lateral boundary Π. We assume that the generic cross-section Σ is a simply connected region and denote by Γ the boundary of Σ. We let $\bar{\mathcal{B}}$ denote the closure of \mathcal{B}, call $\partial \mathcal{B}$ the boundary of \mathcal{B}, and designate by n the outward unit normal of $\partial \mathcal{B}$. Letters in boldface stand for tensors of an order $p \geq 1$, and if v has the order p, we write $v_{ij\ldots s}$ (p subscripts) for the components of v in the underlying rectangular
Cartesian coordinate frame. We shall employ the usual summation and differentiation conventions: Greek subscripts are understood to range over the integers (1, 2), whereas Latin subscripts — unless otherwise specified — are confined to the range (1, 2, 3); summation over repeated subscripts is implied and subscripts preceded by a comma denote partial differentiation with respect to the corresponding coordinate. The rectangular Cartesian coordinate frame is supposed to be chosen in such a way that the \(x_3 \)-axis is parallel to the generators of \(B \), and the \(x_1 O x_2 \)-plane contains one of the terminal cross-sections, while the other is in the plane \(x_3 = h \). We denote by \(\Sigma_1 \) and \(\Sigma_2 \), respectively, the cross-sections located at \(x_3 = 0 \) and \(x_3 = h \).

We consider the equilibrium theory of linear piezoelectricity (see, for example, [4–6]). Let \(u \) denote the mechanical displacement field, and let \(\varphi \) denote the electric potential. We denote by \(u \) the four-dimensional vector field on \(B \), defined by \(u = (u, \varphi) \equiv (u_1, u_2, u_3, \varphi) \). The electric enthalpy corresponding to \(u \) is

\[
U(u) = \frac{1}{2} C_{ijrs} u_{i,j} u_{r,s} + \epsilon_{rij} \varphi_{,j} u_{i,j} - \frac{1}{2} \epsilon_{ij} \varphi_{,i} \varphi_{,j},
\]

(2.1)

where \(C_{ijrs} \), \(\epsilon_{mj} \) and \(\epsilon_{rs} \) are constitutive coefficients which satisfy the symmetry relations

\[
C_{ijrs} = C_{rsij}, \quad \epsilon_{mj} = \epsilon_{mj}, \quad \epsilon_{ij} = \epsilon_{ij}.
\]

(2.2)

We assume that the material is homogeneous so that the constitutive coefficient are constants. The constitutive equations for an anisotropic body are given by

\[
t_{ij}(u) = C_{ijrs} u_{r,s} + \epsilon_{kij} \varphi_{,k},
\]

\[
D_i(u) = \epsilon_{ijk} u_{j,k} - \epsilon_{ij} \varphi_{,j},
\]

(2.3)

where \(t(u) \) is the stress field and \(D(u) \) is the electric displacement field, associated with \(u \).

We suppose that the electric enthalpy is a definite quadratic form in the components of the strain tensor and electric field. It follows that \(U(u) = 0 \) if and only if \(u_i = a_i + \epsilon_{nr} b_n x_n \), \(\varphi = c \), where \(a_i \), \(b_i \), \(c \) are arbitrary constants and \(\epsilon_{nr} \) is the alternating symbol. Let

\[
H = \{ u^0; u^0 = (u_i^0, \varphi^0), u_i^0 = a_i + \epsilon_{nr} b_n x_n, \quad \varphi^0 = c \},
\]

(2.4)

where \(a_i \), \(b_i \) and \(c \) are constants. If \(u \in H \), then \(u \) is called a rigid motion.