A NOVEL CLASS OF UNSTABLE 6-THIOGUANINE-RESISTANT CELLS FROM DOG AND HUMAN KIDNEYS

MITCHELL S. TURKER,* RAYMOND J. MONNAT JR.,* KEN-ICHIRO FUKUCHI,* PATRICIA A. JOHNSTON,* CHARLES E. OGBURN,* RICHARD E. WELLER,† JAMES F. PARK† AND GEORGE M. MARTIN*

*Department of Pathology
University of Washington
Seattle, Washington

†Battelle Pacific Northwest Laboratories
Richland, Washington

Thioguanine-resistant primary clones were grown from single cell suspensions obtained from dog and human kidneys by enzymatic digestion. In medium containing a relatively high concentration (10μg/ml) of thioguanine, thioguanine-resistant primary clones arose from each source at frequencies ranging from 10^{-4} to 10^{-5}. A reduction in total hypoxanthine uptake was found in the thioguanine-resistant primary clones which had developed in thioguanine medium, consistent with a reduction in hypoxanthine phosphoribosyltransferase activity. When these thioguanine-resistant primary clones were subsequently grown in the absence of thioguanine and assayed for the thioguanine-resistant phenotype and hypoxanthine phosphoribosyltransferase activity, it was found that most were now thioguanine-sensitive and yielded cell-free extracts with substantial amounts of hypoxanthine phosphoribosyltransferase activity. In contrast, thioguanine-resistant human clones grown continuously in the presence of thioguanine yielded cell-free extracts with little or no detectable hypoxanthine phosphoribosyltransferase activity. Southern blot analysis demonstrated no structural alterations in the hypoxanthine phosphoribosyltransferase gene in thioguanine-resistant primary human kidney clones. These results

1. Address correspondence to: Dr. Mitchell S. Turker, Department of Pathology, SM-30, University of Washington, Seattle, WA 98195.
2. Key words: hypoxanthine phosphoribosyltransferase; kidney primary clones; purine analogue resistance.
3. Abbreviations: AG, 8-azaguanine; APRT, adenine phosphoribosyltransferase; DAPI, 4'-6 diamino-2-phenylindole; DV, Dulbecco-Vogt; HAT, hypoxanthine, aminopterin, thymidine; HPRT, hypoxanthine phosphoribosyltransferase; PRPP, 5-phosphoribosyl 1-pyrophosphate; TG, 6-thioguanine; TGR, thioguanine-resistant; TGS, thioguanine-sensitive; TTP, thymidine triphosphate.
suggest that a novel mechanism(s) for thioguanine resistance and the control of hypoxanthine phosphoribosyltransferase expression may occur in dog and human kidney cells.

INTRODUCTION

Recent advances in somatic cell genetic techniques have allowed the isolation and clonal expansion of somatic cell variants that arise in vivo. As a result, it is now possible to analyze the molecular events underlying variations in cell phenotype in vivo. The most widely studied of these selective systems involves the isolation of peripheral blood T lymphocyte clones with deficiencies for the X-linked purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT) (EC 2.4.2.8) (Albertini et al., 1982, 1985; Morley et al., 1982, Turner et al., 1985; Bradley et al., 1987). The purine analogue 6-thioguanine (TG) is often used as a selective agent for HPRT-deficient cells (Nelson et al., 1975). When sufficiently high concentrations of TG are used, the resultant TG-resistant (TG^r^) cells usually display severe and stable deficiencies in HPRT expression (Stout and Caskey, 1985). Molecular analyses of HPRT gene structure in TG^r^ human lymphocyte clones have demonstrated that HPRT deficiency can result from major structural alterations (including deletions) at the HPRT locus (Albertini et al., 1985; Turner et al., 1985; Bradley et al., 1987). Analyses of T-cell receptor gene rearrangement in these clones with a T-cell receptor beta chain probe has demonstrated that most TG^r^ lymphocytes arise in different T-cell clones in vivo, and thus are likely to be the result of independent mutational events (Nicklas et al., 1986).

We have previously reported a selective procedure for the isolation and clonal expansion of TG^r^ mouse primary kidney and skeletal muscle cells (Horn et al., 1984). These TG^r^ mouse cells demonstrated apparently stable HPRT deficiencies, consistent with a somatic mutational origin in vivo. In that study, the issue of stability was addressed in only a small sample of clones. Here we have extended this selective system to dog and human kidney cells. Surprisingly, most of the TG^r^ dog and human kidney primary clones selected in comparably high concentrations of TG were not stably TG^r^. These results suggest that the TG^r^ phenotype may be produced by mechanisms other than classical mutation in the HPRT gene of dog and human kidney cells.

METHODS

Isolation and Selection of TG^r^-Dog and Human Kidney Cells. Dog kidneys were from male and female beagle dogs (ages 82-182 months) maintained at Battelle Pacific Northwest Laboratories (Richland, WA). Several of the dogs had received a single