ABSTRACT. Building on previous work of A. Camacho, we give necessary and sufficient conditions for the existence of a cardinal utility function to represent, through summation, a preference relation on sequences of alternatives.

1. INTRODUCTION

Till recently, there were mainly three ways to derive cardinal utility. One is the approach, using strength of preference as a primitive. A second approach uses lotteries. Thirdly there is the approach where alternatives have several coordinates, and the utility function is a sum of coordinate functions.

Recently Camacho came with a new approach, the repetitions approach. For a careful exposition of this approach, a comparison to other approaches, and an explanation of its intuitive virtues, the reader is referred to Camacho [1-4]. The purpose of this paper is to use the ideas of Camacho to give a set of necessary and sufficient conditions, alternative to his set, and to give some supplement to his work. Where Camacho works with finite sequences, we use infinite sequences with tails α_0 ("zero"); in Section 3 we shall show that our set-up is in fact equivalent to Camacho's. We only work with these infinite sequences for their convenience in our present mathematical work.

We assume we have a nonempty set \mathcal{A} of alternatives, with one special element α_0, the "receive nothing" alternative. By $\mathcal{X} \subset \mathcal{A}^{\mathbb{N}}$ we denote the set of those infinite sequences $x = (x_j)_{j \in \mathbb{N}}$, for which

$$N_x := \sup \{\{0\} \cup \{j \in \mathbb{N} : x_j \neq \alpha_0\}\}$$

is finite, so x has a "tail", constant α_0. Furthermore we assume a binary relation \succeq on \mathcal{X}, called preference relation, present. Usual notations are $x \preceq y$ for $y \succeq x$, $x \succeq y$ for $x \succeq y$ & not $y \succeq x$, $x \prec y$ for $y \succ x$, and
\(x \preceq y \) for \(x \succeq y \) \& \(y \succeq x \). \(\succeq \) is a \textit{weak order} if it is transitive and complete (\(x \succeq y \) or \(y \succeq x \), for all \(x, y \in X \)).

Our purpose is to find a function
\[
u : \mathcal{A} \to \mathbb{R} \text{ s.t. } x \succeq y \iff \sum_{j=1}^{\infty} [u(x_j) - u(y_j)] \geq 0.
\]

For such a function to exist, \(\succeq \) must certainly satisfy the following four axioms, as can be checked straightforwardly and is not elaborated here.

AXIOM 1. \(\succeq \) is a weak order.

AXIOM 2 (The Permutation Axiom). For all \(x, y \in \mathcal{X}, N \in \mathbb{N}, \) permutations \(\pi \) on \(\{1, \ldots, N\} \), s.t. \(x_j = y_{\pi(j)} \) for all \(j \leq N \), \(x_j = y_j \) for all \(j > N \); we have \(x \succeq y \).

(A reordering of alternatives does not change desirability).

AXIOM 3 (The Independence Axiom). For all \(x, y, x', y' \in \mathcal{X}, i \in \mathbb{N}, \) s.t. \(x_i = y_i, \ x'_i = y'_i, \ x_j = x'_j \) and \(y_j = y'_j \) for all \(j \neq i \), we have \(x \succeq y \iff x' \succeq y' \).

(The preference between \(x \) and \(y \) is independent of coordinates \(i \) at which \(x \) and \(y \) are equal.)

AXIOM 4 (The Archimedean Axiom). For all \(x, y, v, w \in \mathcal{X} \) with \(x \succ y, v \succ w \), there exists \(M \in \mathbb{N} \) s.t. \(p \succ q \) where \(p_{kN_x + j} = x_j \) for all \(0 \leq k \leq M - 1, 1 \leq j \leq N_x \), \(p_{MN_x + j} = w_j \) for all \(1 \leq j \leq N_w \), and \(p_n = x^0 \) for all \(n > MN_x + N_w \); and where \(q_{kn_y + i} = y_i \) for all \(0 \leq l \leq M - 1, 1 \leq i \leq N_y \), \(q_{MN_y + i} = v_i \) for all \(1 \leq i \leq N_v \), and \(q_m = x^0 \) for all \(m > MN_y + N_v \).

(The difference between \(v \) and \(w \) can be compensated by a sufficient number of differences between \(x \) and \(y \).)

Constructions such as that of \(p \) above will more often be carried out in the sequel. One can imagine the "untailed" part of \(p \) to consist of \(M \) replicas of the "untailed" part of \(x \), followed by one replica of the "untailed" part of \(w \). Axiom 4 has not been used by Camacho, but he indicated it more or less in Section 2.1, page 364, (d), in [3].