Farkas (1986), in her critique of Horvath's (1981) treatment of Hungarian focus constructions, provides evidence from coordinate structures that such constructions cannot be derived, as Horvath proposed, through an application of Move α which lowers an NP with respect to its trace. Horvath's analysis is based on the fact that preverbal modifiers within a V' node appear in postverbal position when a focused NP, supposedly originating as a direct object following V', appears preverbally within V'. The idea is that a D-structure (DS) of form (1) winds up as an S-structure (SS) of form (2).

Horvath's defense of this SS includes the observation that as long as the trace is free in SS, it need not be bound by a c-commanding operator until LF. She thus takes advantage of possibilities made available by recent transformational theory for syntactic lowering effects, or, as she calls it, "downgrading" movement.

1 I wish to express my gratitude to Tom Hukari, who read and commented in detail on a previous draft on this paper, and Geoff Pullum, for suggestions and encouragement. The author also wishes to acknowledge the contributions made by the editor and several anonymous NLLT referees, whose comments and queries materially improved the content of the paper through a number of drafts. The usual disclaimers apply.

Farkas' challenge to this proposal is empirical; she accepts the possibility within government/binding theory (GB) of such downgrading, but argues that it leads to untenable analyses. She further claims, however that "no analogue of downgrading movement is expressible in GPSG [generalized phrase structure grammar]. . . the theory predicts that all 'unbounded movement' is upgrading" (p. 88; emphasis mine), and concludes her discussion with the assertion that, since there is no evidence for downgrading in the literature apart from Horvath's, which she has shown to be spurious, "we can conclude that the generalization requiring the filler to dominate its gap is valid. The GPSG treatment of unbounded dependencies is superior to the GB treatment with respect to this generalization since the non-existence of downgrading movement follows from the former theory but not from the latter" (p. 95; emphasis mine). I argue in this note that on this specific - and rather crucial - point Farkas is in error; there is in fact a perfectly straightforward employment of current GPSG formalism which gives rise to a downgraded filler/gap configuration. In section 1 of the following discussion, I describe the GPSG analysis of unbounded dependencies on which Farkas bases the assertion just cited. In section 2 I provide one rule system, and briefly sketch another, both of which conform to all the canons of well-formedness given in Gazdar et al. (1985) (hereafter GKPS), yet allow a downgraded configuration of exactly the sort Farkas takes to be ruled out, and cite a completely independent analysis within the GPSG framework which relies on the critical formal property present in the hypothetical rule system presented. In section 3, I briefly outline a compositional semantics for the rule system detailed in section 2, and offer some conclusions pertinent to theory comparison in section 4. My concern is not with Farkas' critique of Horvath or her GPSG analysis of Hungarian; rather, the point is the considerable power latent in the feature system of GKPS.

1. Unbounded Dependencies in GKPS

The appearance of unbounded dependencies is regulated in GKPS by a set of principles which determine the distribution of the slash feature. The value of this feature will be a category corresponding to a gap dominated by the categories bearing a slash specification. A gap is launched by some immediate dominance (ID) rule which introduces a constituent bearing a slash feature; the feature-matching principles of GPSG drive it down the head path of the category on which it first appears (though, as with parasitic gaps, it may appear elsewhere in