Comparison of vitreous replacement with Healon® and with HPMC in rabbits' eyes

R. KOSTER and J.S. STILMA

Hospital Free University, Department of Ophthalmology Free University Amsterdam, Lab. Experimental Medicine

Key words: vitreous replacement, rabbits' eyes, Healon, HPMC = Hydroxy Propyl Methyl Cellulose

Abstract. Ten rabbits underwent vitreous aspiration and replacement by either Healon® or Hydroxy Propyl Methyl Cellulose 2%. Four weeks' observation did not reveal noticeable differences between Healon and HPMC with regard to anterior chamber reaction, intra-ocular pressure or cataract. The vitreous reaction in eyes with HPMC was much more severe than in Healon eyes, with typical white precipitates and vitreous bands. Post-mortem examination confirmed the clinical findings.

Introduction

Vitreous surgery has accelerated the search for replacements for the vitreous body. For many years absorbable and nonabsorbable fluids and gasses have been tried out, but so far the ideal vitreous substitute has not been found (François and Victoria-Troncoso, 1972/73; Michels, 1981; Tolentino et al., 1976). The purpose of this study was to compare Healon® and Hydroxy Propyl Methyl Cellulose 2% (HPMC) as vitreous substitutes in rabbits' eyes. Healon® has been used in the vitreous of monkeys and humans with reasonable success (Denlinger and Balasz, 1980; Denlinger et al., 1980 Draeger and Winter, 1982; Fitzgerald, 1981; Pallin and Walman 1981; Schepens, 1981; Zirm, 1982). Hyaluronic acid is one of the components of the normal vitreous (Laurent, 1981; Schmut and Hofmann, 1982; Swarm, 1980). HPMC 2% has been used in anterior segment surgery for corneal endothelial protection (Aron-Rosa et al., 1983; Boyd, 1982; Fechner and Fechner, 1983; MacRae et al., 1983; Smith et al., 1984). The effect of HPMC on the vitreous, however, is unknown.

The vitreous of rabbits' eyes cannot simply be aspirated. Chemical liquefaction by acetic acid was described by Mortada (1982), but was not successful in our hands. Vitrectomy with the vitreous micro-stripper (Klötti) is difficult in the rabbit's eye, because of the risk of damage to the lens and retina (Dutman, 1979; van der Zee et al., 1984). After a discussion with Dr. J. Worst we decided on the following procedure.
Material and methods

Ten Dutch pigmented rabbits were chosen for the vitreous experiments. One week prior to the planned replacement of the vitreous a sharp needle (0.4 mm) was introduced into the vitreous body via a scleral incision 5 mm from the limbus in the superior nasal quadrant. The needle was rotated in the vitreous so as to promote mechanical liquefaction. The perforation site and the conjunctiva were sutured under the surgical microscope.

One week later the vitreous was aspirated through the same 0.4 mm needle. Healon or HPMC was injected into the vitreous cavity of either the right or left eye, according to an at random list. Postoperative evaluation consisted of slitlamp examination of the anterior chamber and lens, ophthalmoscopy of the vitreous and retina, and applanation tonometry. The evaluation took place on postoperative days 1, 2, 7, 14, 21 and 28. The examiner did not know which eyes contained Healon and which HPMC. At the end of the examination, decoding of the specimens took place.

Enucleation was performed on the 28th postoperative day. Following Dr. Worst's technique the eyes were fixed in alcohol and formaline 10% during 270 days. The vitreous was examined after under-water equatorial sectioning of the eyes. This method prevents the liquefied vitreous from flowing out of the bulb. The examination of the two halves of the eye took place under a dissecting stereo microscope, in order to see whether the vitreous was clear or cloudy with precipitates and strands. (Illustration in Figure 6). No other distinction was made regarding the severity of reaction in the vitreous.

Anesthesia was always performed with Hypnorm® injection. The animals were kept in separate cages under identical conditions.

Results

Nine rabbits were available for study, as one rabbit died during the 2nd session of general anesthesia. One rabbit died on the tenth day and was included in the study. The average body weight of the rabbits was 2150 gram.

The average amount of vitreous that could be replaced was 0.45 ml for the Healon eyes and 0.4 ml for the HPMC eyes.

The intraocular pressures of Healon and HPMC eyes did not show significant differences (see Figure 1). The intraocular pressure dropped after the first needling, but gradually recovered to the initial level. The intra-ocular pressures of all eyes at the beginning and end of the study are given in Figure 2.

The anterior chamber reaction was graded as normal (−), slight turbidity (+), moderate turbidity (+) and severe turbidity (+ +). The Healon eyes had slightly more anterior chamber reaction during the first two days. After one week all Healon eyes had clear anterior chambers, but 2 HPMC eyes had