MULTIPLE ENERGETIC INJECTIONS IN A STRONG SPIKE-LIKE SOLAR BURST

P. KAUFMANN, E. CORREIA, and J. E. R. COSTA
INPE: Instituto de Pesquisas Espaciais, CNPq, C.P. 515, 12200-São José dos Campos, SP, Brazil

B. R. DENNIS
Laboratory of Astronomy and Solar Physics, Solar Activity Branch, NASA-Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

G. J. HURFORD
California Institute of Technology, Pasadena, CA 91125, U.S.A.

and

J. C. BROWN
Department of Astronomy, The University, Glasgow G12 8QQ, U.K.

(Received 23 September, 1983; in revised form 4 January, 1984)

Abstract. An intense and fast spike-like solar burst was observed with high sensitivity in microwaves and hard X-rays, on December 18, 1980, at 19:21:20 UT. It is shown that the burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which showed remarkable proportionality between hard X-ray and microwave fluxes. The finer time structures were best defined at mm-microwaves. At the peak of the event the finer structures repeat every 30–60 ms (displaying an equivalent repetition rate of 16–20 s^{-1}). The more slowly varying component with a time scale of about 1 s was identified in microwaves and hard X-rays throughout the burst duration. Similarly to what has been found for mm-microwave burst emission, we suggest that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). We estimate that one such injection produces a pulse of hard X-ray photons with about 4×10^{21} erg, for $\varepsilon \approx 25$ keV. We use this figure to estimate the relevant parameters of one primary energy release site both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal, and also discuss the relation of this figure to global energy considerations. We find, in particular, that a thick-target interpretation only becomes possible if individual pulses have durations larger than 0.2 s.

An intense spike-like burst was observed on 18 December, 1980, 19:21:20 UT, at various energy ranges, by several space and ground-based observatories (NOAA, 1981). It corresponded to an SN optical flare that occurred in NOAA region 2840 at a location of N 07 W 11. Hard X-ray data with high sensitivity and time resolution were obtained by the Hard X-ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) satellite (Orwig et al., 1980; Dennis et al., 1982). High sensitivity and time resolution mm-microwave data were obtained with the Itapetinga 14-m antenna, at
Fig. 1. The 18 December, 1980, 19:21:20 UT solar burst, observed in five energy ranges of the HXRBS experiment on board of SMM satellite. Finer time structures are suggested. They become relatively more important for higher energies.