A NEW CHARACTERIZATION OF
CONVEX PLATES OF CONSTANT WIDTH

ABSTRACT. A convex plate $D \subset \mathbb{R}^2$ of diameter 1 is of constant width 1 if and only if any two perpendicular intersecting chords have total length ≥ 1.

1.

Let $D \subset \mathbb{R}^n$, $n \geq 2$, be a convex body of diameter 1. We say that D has the property (P) if any n mutually perpendicular chords, having a common point, have total length ≥ 1. For $n = 2$, this property has been introduced by Schmitz [4]. He has shown that a circle as well as a Reuleaux triangle of diameter 1 have this property (even with strict inequality for non-degenerate chords), and further he stated that only plates of constant width can have property (P). We shall continue these considerations with the following statements.

THEOREM 1. A convex plate $D \subset \mathbb{R}^2$ of diameter 1 has property (P) if and only if it is of constant width 1. Moreover, if D has constant width 1, in property (P) we have strict inequality for non-degenerate chords.

PROPOSITION. Let a convex body $D \subset \mathbb{R}^n$, $n \geq 2$, of diameter 1 satisfy the property (P) (for non-degenerate chords). Then D is of constant width 1.

There remains the open question of whether for $n \geq 3$ we have an analogous equivalence. (One sees easily that the positive answer for \mathbb{R}^{n+1} implies the same for \mathbb{R}^n. Namely, $D \subset \mathbb{R}^n$ can be induced in a convex body $D' \subset \mathbb{R}^{n+1}$ of constant width 1 (cf. Chakerian and Groemer [1]), and by Lemma 1 we may consider chords of D' with a common endpoint, one parallel to the $(n + 1)$st basis vector and of length 0.) Anyway, a ball of diameter 1 in \mathbb{R}^n satisfies property (P). To see this, we may clearly restrict ourselves to the case when the common point of the chords lies on the boundary, in which case

$$\sum_{i=1}^{n} |P_iQ_i| = \sqrt{\sum_{i=1}^{n} |P_iQ_i|^2} = 1.$$
2.

We shall start by proving the proposition along the lines of the hint of Schmitz [4].

Proof. We denote by $H(u)$ the supporting plane of D with outer normal u. Let us suppose for some u that $\dim(D \cap H(u)) < n - 1$, and $P \in D \cap H(u)$. Let $PQ(u)$ be the chord of D through P with direction u. Suppose $|PQ(u)| < 1$, and denote by $H_\epsilon(u)$ the translate of $H(u)$ by a distance ϵ, translated inwards D. Then the width of $D \cap H_\epsilon(u)$ tends to 0, if $\epsilon \to 0$. Hence, through $H_\epsilon(u) \cap PQ(u)$ we can choose $n - 1$ mutually perpendicular chords of D, lying in $H_\epsilon(u)$, whose total length is arbitrarily small provided ϵ is sufficiently small. These $n - 1$ chords, together with $PQ(u)$, show that property (P) does not hold. By this contradiction, for each u with $\dim(D \cap H(u)) < n - 1$ and each $P \in D \cap H(u)$ we have $|PQ(u)| = 1$. This implies that the width of D in direction u is 1.

Let us now consider the direction set $\{u \mid \dim(D \cap H(u)) = n - 1\}$. Since these directions correspond to disjoint non-empty open sets of the boundary of D, they constitute an at most countable set. In particular, this set contains no non-empty open subset of the unit sphere S^{n-1}. For the width function $w(u)$ we have $w(u) = 1$ on the complement of this set. Hence, by continuity $w(u) = 1$ on all S^{n-1}, i.e. D is of constant width 1. \square

We see that here the property (P) was used only in the limit, $n - 1$ chords tending to 0 (or equal to 0).

LEMMA 1. Let $D \subset \mathbb{R}^n$, $n \geq 2$, be a convex body, and let P_1Q_1, \ldots, P_nQ_n be mutually perpendicular chords of D, having a common point O. (Degeneration into points of tangency with lines of direction P_iQ_i is admitted, but in this case we consider the direction of P_iQ_i as fixed, and perpendicularity is meant in this manner.) Then $\Sigma |P_iQ_i|$ attains its minimum in a case where $O \in \text{Bd} \ D$ and O is an endpoint of each chord P_iQ_i, and if D is strictly convex, only in such a case.

Proof. Let us fix the chord P_nQ_n and translate all other chords P_iQ_i parallel to themselves, the common point O of all these chords traversing the whole segment P_nQ_n. Then each length $|P_iQ_i|$ $(1 \leq i \leq n - 1)$ is a concave function of the position of O on P_nQ_n, and is even strictly concave for D strictly convex. Hence the same holds for $\Sigma_{i=1}^{n-1} |P_iQ_i|$, and thus the minimum is attained for $O = P_n$ or $O = Q_n$, and for strictly convex D this minimum cannot be attained elsewhere. Clearly, for strictly convex D the point O must be an endpoint of each other chord P_iQ_i, as well. For general D observe that if O was originally an endpoint of some chord P_iQ_i, $1 \leq i \leq n - 1$, it remained so by moving O along P_nQ_n provided O was a relatively interior point of P_nQ_n.