ON THE IDENTIFICATION OF NATURAL MODULES FOR SYMPLECTIC AND LINEAR GROUPS DEFINED OVER ARBITRARY FIELDS

Dedicated to Professor J. Tits on the occasion of his sixtieth birthday

ABSTRACT. Let G be $\text{SL}_n(k)$ or $\text{Sp}(2n,k)$, k a field. Then a criterion for a $\mathbb{Z}G$-module V to be the direct sum of natural, resp. natural and dual, kG-modules is given. In fact this criterion holds for perfect central extensions of G generated by 'k-root subgroups'. This has an application to the classification of non-simple groups generated by 'k-root subgroups'.

1. INTRODUCTION

Let k be a field and Σ a class of abelian subgroups generating the group G. Then Σ is a class of k-root subgroups of G, if the following holds:

(1) For $A, B \in \Sigma$ one of the following holds:
 (a) $[A, B] = 1$.
 (b) $\langle A, B \rangle \cong (P)\text{SL}_2(k)$ and A, B are full unipotent subgroups of $\langle A, B \rangle$ (i.e. a conjugate of $\left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \middle| a \in k \right\}$).
 (c) $\langle A, B \rangle$ is special with $[a, B] = [b, A] = [A, B] \in \Sigma$ for all $a \in A^\#$, $b \in B^\#$.

(2) G satisfies the maximality condition (ascending chain condition) for Σ-subgroups.

If (1)(c) never occurs Σ is called a degenerate class of k-root subgroups or a class of k-transvections of G. Otherwise Σ is non-degenerate. Assume now that G is generated by a class Σ of k-root subgroups and $|k| > 3$ if Σ is degenerate. Then it has been shown in [4] and [5] that there exists a nilpotent radical $R(G)$ satisfying

(a) $\bar{G} = G/R(G)$ is quasisimple,
(b) $\bar{R} = R(G)/R(G) \cap Z(G)$ is abelian,
(c) $C_{\bar{G}}(\bar{G}) = 0$ and $\bar{R} = [\bar{R}, \bar{G}]$,
(d) $[\bar{R}, \bar{A}, \bar{B}] = 0$ for all commuting elements \bar{A}, \bar{B} of $\bar{\Sigma}$.

Moreover, in [4] simple groups generated by a class of k-transvections with $|k| > 3$ have been determined, the generic cases being symplectic groups over

k, respectively unitary groups over extension skew fields of k. Further, if Σ is non-degenerate and $\tilde{R} \neq 0$ it has been shown in [5] that one of the following holds for $G^* = \bar{G}/Z(\bar{G})$:

(A) $G^* \cong \text{PSL}_n(k), n \geq 3$.
(B) G^* is an orthogonal group of Witt-index = 3 defined over k.
(C) G^* is of rank 2. (Here the rank is defined internally. It is shown in [5] that a simple group G^* of rank 2 is either $\text{PSL}_3(k)$ or of type G_2.)

There are two main applications of the forthcoming classification of nearly simple groups generated by k-root subgroups I can see at the moment, namely:

(I) determination of subgroups generated by long-root subgroups of algebraic groups defined over k;
(II) quadratic action.

Since the class of long-root subgroups of an algebraic group over k satisfies our conditions (1) and (2) above, such a subgroup (as in (I)) is generated by a 'set' of k-root subgroups and is thus by one of the main propositions of [5] mod some nilpotent normal subgroup a central product of groups generated by classes of k-root subgroups. Thus, if one not only wants to determine the 'nearly simple' subgroups generated by long-root subgroups, a determination of $\mathbb{Z}\bar{G}$-modules \tilde{R} satisfying (c) and (d) above seems to be necessary.

In his work on quadratic pairs for $p > 5$, Thompson has shown (after roughly one-third of the proof) that there exists a class of quadratically acting elementary abelian p-subgroups satisfying (1) above, where k is some $\text{GF}(p^n)$. It is my hope that one can prove something similar (perhaps only in more restricted situations) even in the infinite case. If now G acts irreducibly, then $\tilde{R} = 0$. But if not, then \tilde{R} might be different from 0. Thus if one is also interested in the determination of non-irreducible quadratically acting groups, again the question of determining $\mathbb{Z}\bar{G}$-modules \tilde{R} satisfying (c) and (d) above arises.

Now in the finite case this is easily done using the representation theory of Lie-type groups in their natural characteristic. But the infinite case is more complicated, since one needs to construct the field action. For this purpose we prove:

THEOREM 1. Suppose G is a quasisimple group generated by a class Σ of k-root subgroups with $\bar{G} = G/Z(G) \cong \text{PSL}_n(k), n \geq 2$, or $\text{PSp}(2n, k), n \geq 2$, and Σ is the class of root groups of transvections of \bar{G}. Assume that V is a $\mathbb{Z}G$-module