RAJENDRA M. PAWALE

QUASI-SYMMETRIC 3-DESIGNS WITH TRIANGLE-FREE GRAPH

ABSTRACT. The following result is proved: Let D be a quasi-symmetric 3-design with intersection numbers $x, y (0 \leq x < y < k)$. D has no three distinct blocks such that any two of them intersect in x points if and only if D is a Hadamard 3-design, or D has a parameter set (v, k, λ) where $v = (\lambda + 2)(\lambda^2 + 4\lambda + 2) + 1$, $k = \lambda^2 + 3\lambda + 2$ and $\lambda = 1, 2, \ldots$, or D is a complement of one of these designs.

1. INTRODUCTION

A t-$(v, k, 2)$-design is a collection of k-subsets (called blocks) of a v-set (the elements of which are called points) such that any t-tuple of points occurs in exactly λ blocks. In a t-design let λ_i denote the number of blocks containing a given i-tuple, with $1 \leq i \leq t$. Then the following identity is satisfied:

$$\lambda_i \binom{k-i}{t-i} = \lambda \binom{v-i}{t-i}. \quad (1)$$

Let D be a t-(v, k, λ)-design and let p be a point of D. The collections $D_p = \{B \setminus \{p\} : B $ is a block of $D, p \in B\}$ and $D^p = \{C : C $ is a block of $D, p \notin C\}$, then D_p and D^p are $(t-1)$-$(v-1, k-1, 2)$ and $(t-1)$-$(v-1, k, \lambda - 1 - \lambda)$ designs and are respectively called the derived and the residual designs of D (see [5]).

A $(t-1)$-design E is said to be extendable if $E = D_p$ for some t-design D; also D is called an extension of E.

A symmetric design is a 2-(v, k, λ)-design such that $b = \lambda_0 = v$, $r = \lambda_1 = k$ and any two blocks intersect in λ points. A t-design with two block intersection numbers is said to be quasi-symmetric. Here we consider a quasi-symmetric 3-(v, k, λ)-design with block intersection numbers $x, y (0 \leq x < y < k)$. (In the case $y = k$, it is easily seen that D is a repetition of copies of a symmetric design.) Cameron [4] showed that quasi-symmetric 3-designs with an intersection number 0 are precisely an extension of symmetric designs and classified them into four types. Quasi-symmetric 3-designs in which one of the intersection numbers was 1 were classified by Calderbank and Morton [2] and Pawale and Sane [7].

A quasi-symmetric block design (2-design) is called a proper quasi-symmetric design if both intersection numbers occur. The block graph Γ of such a design D is a graph whose vertices are blocks of D with two distinct vertices adjacent if and only if the corresponding blocks intersect in y points.

It is well known that F and \overline{F}, the complement of F, are strongly regular graphs. Particularly interesting quasi-symmetric designs are those in which \overline{F} has no triangles. It is easy to see that \overline{F} has no triangles if and only if D has no three distinct blocks such that any two of them intersect in x points. Such designs were first studied by Baartmans and Shrikhande [1]. They showed that, for fixed intersection numbers 0 and y, there are finitely many parametrically possible such designs. This result was extended by Shrikhande [9] for fixed intersection numbers x, y, $y > 1 + \sqrt{1 + 8x + 5x^2}$. In this paper we characterize quasi-symmetric 3-designs with the above property (Theorem 3.2), and show that these are precisely the Hadamard 3-designs or the 3-designs with $x = 0$ occurring in Cameron's classification of extensions of symmetric designs or the complement of these designs.

Section 2 contains preliminary results needed in Section 3. For basic definitions and results we refer to [5].

2. Preliminaries

In this section we list some results needed in Section 3. Let D be a proper quasi-symmetric 2-design with a standard parameter set $(v, b, r, k, \lambda; x, y)$, where x, y are block intersection numbers with $0 \leq x < y < k$. Let Γ denote the block graph of D where two vertices are adjacent if and only if the corresponding blocks intersect in y points. Let $\overline{\Gamma}$ denote the complement of Γ.

The following result is well known.

Lemma 2.1 [5]. Both Γ and $\overline{\Gamma}$ are strongly regular graphs. If Γ is connected then its parameter set (n, a, c, d) is given by

$$
n = b, \quad a = \frac{k(r-1) - x(b-1)}{(y-x)},
$$

$$
c = \frac{(r-\lambda)(k-x)}{(y-x)} - \frac{(k-x)}{(y-x)},
$$

$$
d = a - \frac{(r-\lambda)(k-x)}{(y-x)^2} + \frac{(k-x)^2}{(y-x)^2},
$$

where $y-x$ divides $k-x$. Also if $\overline{\Gamma}$ is connected then the parameters $\overline{a}, \overline{c}, \overline{d}$ of $\overline{\Gamma}$ are obtained by interchanging x and y in the formulas of a, c, d respectively.

Lemma 2.2 [9]. The following are equivalent for a quasi-symmetric design D with block graph $\Gamma(b, a, c, d)$: