ABSTRACT. Let $t > r$ be an integer. If G is a group acting flag-transitively on a finite linear space and G^0 is a normal subgroup of G with t orbits on the flags, then G^0 is point-primitive up to a finite number of exceptions.

1. INTRODUCTION

Let S be a finite linear space or Steiner system $S(2, k, v)$ with $k < v$ and G a group of automorphisms of S acting flag-transitively on S. Then the theorem of Higman–McLaughlin ([5] or [1]) asserts that G acts primitively on the points. The proof of this important result is using very little of the geometry and of the group theory; it is essentially combinatorial. It calls for generalizations but none is known. One of our goals here is to use the same methods in a more general setting. Assume that $G^0 \neq 1$ is a normal subgroup of G. Then G^0 is no longer necessarily primitive. It suffices to think of the case where S is an affine space and G^0 is the translation group. However, other known examples indicate that G^0 is usually flag-transitive, hence primitive. We shall prove a generalized Higman–McLaughlin theorem whose purpose is to put very strong restrictions on S when G^0 is imprimitive and of index ≤ 3 in G. The result can be applied to the classification program [2]. The author thanks A. Pasini for helpful remarks on the first version of this paper.

2. REDUCTION TO ARITHMETIC

2.1. Let S be a finite linear space of v points, with lines of k points, $2 \leq k < v$. Then the number of lines on a point is

$$r = \frac{v - 1}{k - 1}$$

and the number of lines is

$$b = \frac{v(v - 1)}{k(k - 1)}.$$
Moreover,

\[k \leq r \quad \text{and} \quad k^2 - k + 1 \leq v \quad (\text{see [1]}). \]

2.2. Let \(G \) be a group of automorphisms of \(S \) acting transitively on the flags of \(S \), i.e. the incident point-line pairs.

Let \(G^0 \neq 1 \) be a normal subgroup of \(G \) and \(B \) a partition of the point set of \(S \) in \(n \) blocks of \(c \) points such that \(B \) is \(G^0 \)-invariant. Assume \(c \geq 2, n \geq 2 \).

Hence

\[v = cn. \]

Let \(t \) be the number of orbits of \(G^0 \) on the flags of \(S \). Since \(G \) is point-primitive, \(G^0 \) is point-transitive and so, for a given point \(p \), the stabilizer \(G^0_p \) has \(t \) orbits of length \(r/t \) on the lines through \(p \).

2.3. Let \(p \) be a point and \(B \) the block on \(p \). For each orbit of \(G^0_p \) on the lines through \(p \), let \(l_i, i = 1, \ldots, t, \) be a representative line. Let \(d_i = |B \cap l_i| \). Then

\[c - 1 = \frac{r}{t} \sum_{i=1}^{t} (d_i - 1). \]

Put \(d = \sum_{i=1}^{t} (d_i - 1) \). Since \(c \geq 2 \), we get \(d \geq 1 \). Hence we reach the following conclusion.

2.4. PROPOSITION. Under the assumptions made in 2.1 and 2.2 there is an integer \(d > 1 \) such that

\[r = \frac{t(c - 1)}{d} \quad \text{and} \quad d | c - 1. \]

2.5. Using (1) to (5) and the fact that \(k, v, r, b, c, n, t \) and \(d \) are integers with \(v > k > 2, r > v, c > 2, n > 2, t > 1 \) we can now derive rather strong constraints by a purely arithmetical analysis.

3. THE ARITHMETICAL ANALYSIS

3.1. Let us start with integers \(k, v, r, b, c, n, t, d \) such as in 2.5.

3.2. There exists an integer \(e \) such that \(e \geq 1 \) and

\[n = \left(\frac{e(c - 1)}{d} \right) + 1. \]

Proof. By (5), \(c - 1 | dr \) so by (1), \(c - 1 | d(v - 1) \), hence \(c - 1 | (nc - 1)d \) by (4), etc.