HIGH BLOOD PRESSURE AND THE INCIDENCE OF NON-INSULIN DEPENDENT DIABETES MELLITUS: FINDINGS IN A 11.5 YEAR FOLLOW-UP STUDY IN THE NETHERLANDS

R.P. STOLK1, I.P. VAN SPLUNDER, J.S.A.G. SCHOUTEN, J.C.M. WITTEMAN, A. HOFMAN and D.E. GROBBEE

Department of Epidemiology and Biostatistics - Erasmus University Medical School - P.O. Box 1738 3000 DR - Rotterdam - The Netherlands.

Key words: Blood pressure - Diuretics - Heart rate - Obesity - Risk factors - Follow-up

To examine the contribution of cardiovascular risk factors to the development of non-insulin dependent diabetes mellitus, a prospective follow-up study was performed of a cohort, initially examined in a population survey on cardiovascular risk factors. The survey was conducted from 1975 to 1978 in the Netherlands among 5700 men and women aged 20 to 65. In 1988 a questionnaire on the prevalence of chronic diseases, including diabetes mellitus, was sent to all living participants of the initial survey. The general practitioners of the persons who indicated to have diabetes mellitus were asked to confirm the diagnosis. Diabetes mellitus was defined as current use of oral hypoglycemic drugs or insulin. After exclusion of the prevalent cases at the initial survey, 65 incident confirmed cases remained. All others responding to the questionnaire served as controls.

The incidence of diabetes mellitus was associated with body mass index, use of diuretics, systolic and diastolic blood pressure. After adjustment for age and body mass index systolic and diastolic blood pressure were still associated with the incidence of non-insulin dependent diabetes mellitus in men; relative risks 1.28 (95% confidence interval 1.06-1.54) and 1.40 (95% CI 1.06-1.85) per 10 mmHg respectively. For women, only the relative risk associated with the use of diuretics remained statistically significant (2.26, 95% CI 1.04-4.90). This probably reflects the risk of (treated) hypertension: adjusted for blood pressure, the relative risk lost statistical significance.

These findings suggest that elevated blood pressure is a risk for the development of non-insulin dependent diabetes mellitus (NIDDM). This supports the view that NIDDM and hypertension may have a similar origin.

INTRODUCTION

In several epidemiologic studies risk factors for the development of non-insulin dependent diabetes mellitus have been identified. Among these, the most important are age, obesity and glucose intolerance (2, 12, 21, 22). Studies on the association between other cardiovascular risk factors, e.g. hypertension, and the incidence of diabetes mellitus, however show conflicting results (3, 7, 13). This is partly due to differences in definition of diabetes. Abnormal glucose tolerance tests, fasting blood glucose levels above certain levels, health-questionnaires, hospital records, and the use of hypoglycemic medication are the most commonly used definitions. In addition, most studies have been cross-sectional, which precluded to investigate the time-sequence of the potential risk factor and the incidence of diabetes mellitus.

In the present study we used data obtained in a 11.5 year follow-up study of a large population in the Netherlands to prospectively assess the relation between cardiovascular risk factors and the incidence of diabetes mellitus.
SUBJECTS AND METHODS

Between 1975 and 1978 a population survey was conducted in the Dutch town of Zoetermeer, among 5681 men and women aged 20 to 65. The study was conducted among all the inhabitants of two suburbs (response rate 78%). The main objective of this population survey was to study determinants and prevalence of rheumatic diseases, chronic pulmonary diseases and cardiovascular diseases. Details of the study have been published previously (20). In 1988 a questionnaire on the presence of chronic diseases was sent to those between 20 and 65 years of age at the time of the initial survey. The questionnaire included two questions on diabetes mellitus: “Did you develop diabetes mellitus since the examination in 1975-1978?” and “Did you presently have diabetes mellitus?”.

In the original survey blood pressure was measured on the left arm using a random zero sphygmomanometer. The mean of two readings in a sitting position was used in the analysis. Height and weight were measured without shoes and with indoor clothing. Body mass index was calculated as the ratio of weight to the square of height. Triceps skinfold was measured at the right and left arm. The mean of these two measurements was used in the analysis.

The questionnaire was sent to the 4968 subjects who were alive and whose current addresses were available in 1988. After one reminder, 3973 questionnaires were returned (response rate 80%) and 133 participants answered positively to one of the diabetes questions. The general practitioners of the persons who indicated on the questionnaire that they had diabetes mellitus were contacted to confirm the diagnosis. Diabetes mellitus was defined as the current use of oral hypoglycemic drugs and/or insulin.

Of each confirmed case, the general practitioner also provided the date of diagnosis. From all 133 persons, information was obtained from the general practitioners in 1989. At the initial survey in 1975-1978 the diagnosis of diabetes mellitus was made by a physician, using the same criteria. These prevalent cases were excluded from the analysis. The age of onset of all incident diabetic cases in this study was 36 years and over. The mean age of onset was 50.4 years for the 13 subjects using insulin; the insulin therapy started on average 3 years after the time of diagnosis. So we assumed that they all have non-insulin dependent diabetes. All others responding to the questionnaire who were not classified as having diabetes, and had complete data of the initial survey, served as controls (n = 3744). By comparing the baseline characteristics of the incident diabetic cases and the controls, it was possible to investigate the association between various cardiovascular risk factors and the incidence of diabetes mellitus.

After exclusion of the known diabetes patients in 1975-1978 (n = 28) and the persons who did not had diabetes according to their general practitioner (n = 40), 65 incident cases of diabetes mellitus remained, 33 men and 32 women (incidence rate 1.5/1000 person-years). The baseline characteristics at the survey in 1975-1978 of the persons who later developed diabetes mellitus and who did not develop diabetes mellitus, are given in Table 1.

For an additional analysis of the association between hypertension and the incidence of diabetes mellitus, the population was categorized according to the WHO-guidelines in normotensives (diastolic blood pressure < 90 mmHg), borderline hypertensives (diastolic 90-94 mmHg) and hypertensive (diastolic ≥ 95 mmHg) (1).

To investigate the association between cardiovascular risk factors and the incidence of diabetes mellitus, and to adjust for possible confounders, proportional hazard analysis was used. Analyses were performed both by entering determinants as continuous variables in the model and by using categorical variables based on quintiles of the distribution in the total population. For each cardiovascular risk factor the relative risk for diabetes mellitus and the 95%-confidence interval was computed.

RESULTS

Age was significantly associated with the incidence of diabetes mellitus, with a relative risk of 1.05 per year for men (95% confidence interval 1.02-1.09) and 1.10 for women (95% CI 1.06-1.14). The results of the proportional hazard analysis of the cardiovascular risk factors assessed at baseline are given in Table 2. Body mass index, systolic and diastolic blood pressure were significantly associated with the incidence of diabetes mellitus in men and women, after adjustment for age. Heart rate in men, and skinfold thickness and use of diuretics in women also showed significant associations with the incidence of diabetes.

After adjustment for age and body mass index heart rate, systolic and diastolic blood pressure remained significantly associated with the incidence of diabetes mellitus in men. In women, only the relative risk associated with the use of diuretics remained statistically significant. By using categorical variables the risk of diabetes mellitus appeared to rise gradually with increasing blood pressure level and body mass index. By contrast, for heart rate in men the relative risk of diabetes was raised in particular in the highest quintile. After adjustment for age, body mass index and systolic blood pressure, the association of heart rate and diuretics with the incidence of diabetes were no longer statistically significant. In men the relative risk was 1.25 (95% CI 0.97-1.62) for heart rate and 1.62 (95% CI 0.48-5.44) for diuretics. In women these relative risks were 1.05 (95% CI 0.80-1.38) and 2.18 (95% CI 1.00-4.78) respectively. Similar results were obtained after adjustment for diastolic blood pressure.

To exclude the effect of anti-hypertensive medication on the association of blood pressure and the development of diabetes mellitus, those subjects...