0. Introduction

The theory of color symmetry deals with the problem of how to add colors to different portions of a symmetric design, pattern, crystal, etc., in such a way that the elements of its symmetry group G will each be associated consistently with a permutation of the colors; e.g., if g takes any region colored red onto one colored yellow, it must take all red regions onto yellow ones. (See, for example, references [1], [2], [3], and [5].) It often occurs, however, that a design may have some local symmetries which do not belong to G; that is, it may contain many copies of symmetric motifs whose symmetries are not symmetries of the overall pattern. For example, in Figure 1 we have a pattern whose overall symmetry group is pm but which contains an infinite collection of pentagons each having symmetry group D_5. Figure 2 shows a frieze diagram whose symmetry group ($1pm$) consists of translations and reflections in vertical axes, but it contains a collection of equilateral triangles which individually have symmetry group D_3.

The usual approach to such designs is to ignore any extra local symmetries and simply consider the overall symmetry group G. In this article we consider the problem of how to color a design in such a manner that the motifs considered separately are also each colored symmetrically.
1. BACKGROUND

The basic theory for symmetric coloring is explained in [3]. Generally, for a design with symmetry group G, a sequence $\{A_i\}$ of disjoint fundamental regions is selected such that for any pair A_1, A_2 there is a unique $g \in G$ with $A_1 g = A_2$. If one of them, Ω, is selected as the 'starting region', then the regions may be labeled by the elements of the group, identifying Ωg with g. We shall be writing our transformations on the right and composing from left to right. Let μ be a transitive permutation representation of G on a set of colors $S = \{1, 2, \ldots, n\}$. We shall use the notation $\mu(g)$ or μ_g for the permutation assigned to g. A coloring of the design is obtained by picking a color $j \in S$ and assigning j to Ω. Then to each region Ωg assign the color $(j)\mu_g$. If H is the stabilizer subgroup of the color 1 and $\mu(x_i)$ takes 1 to i for $i = 1, \ldots, n$, then this coloring corresponds to the 'biset decomposition' $x_j^{-1}Hx_1 \cup x_j^{-1}Hx_2 \cup \cdots \cup x_j^{-1}Hx_n$ of G (see [3, Section 2]). Denote this coloring $[x^{-1}_jH]$. Two such colorings $[x_j^{-1}H]$ and $[x_k^{-1}H]$ are equivalent precisely if $x_k x_j^{-1} \in N_G(H)$, where $N_G(H)$ denotes the normalizer of the subgroup H in G (see [4, p. 2037]). Note that, in general, two symmetric colorings are called equivalent if one may be transformed to the other by a relabelling of the colors.

If several associated sequences of fundamental regions are selected (for example, by subdividing the regions), then a compound coloring (of 'type I') associated with μ may be obtained by using different biset decompositions for each sequence. If different transitive permutation representations (on disjoint sets of colors) are used for different sequences, we get a compound coloring of 'type II' which essentially involves an intransitive representation of G (see [3, Section 3]).

2. GENERAL THEORY OF LOCAL COLOR SYMMETRY

Assume then that one has a pattern, design or structure with overall symmetry group G and included in the design is a collection \mathcal{M} of disjoint congruent