SIMPLICIAL CROSS-POLYTOPIC d-ARRANGEMENTS

ABSTRACT. Branko Grünbaum has observed that the projective d-arrangements formed by the facet hyperplanes of a regular polytope together with some of its hyperplanes of mirror symmetry and possibly the hyperplane at infinity are sometimes simplicial.

We investigate the projective d-arrangements associated in this manner with a cross-polytope. Fourteen such simplicial arrangements are known: three 1-arrangements, four 2-arrangements, six 3-arrangements, and one 4-arrangement. In this paper we prove that no other arrangement so associated with a cross-polytope is simplicial.

1. INTRODUCTION

A finite set \mathcal{A} of hyperplanes in real projective d-space \mathbb{P}^d is a (projective) d-arrangement when $\bigcap (\mathcal{A}) = \emptyset$. A d-arrangement is simplicial if each component of $\mathbb{P}^d \setminus \bigcup (\mathcal{A})$ is a simplex. The basic references on these matters are Grünbaum [3] and Grünbaum and Shephard [5]; see also Zaslavsky [6].

Grünbaum has suggested that when \mathbb{E}^d is extended to \mathbb{P}^d by adjoining a hyperplane at infinity in the classical manner, the projective d-arrangements obtained by including with the facet hyperplanes of a regular polytope in \mathbb{E}^d some of its hyperplanes of mirror symmetry, possibly including the hyperplane at infinity, might be simplicial. (See page 56 of [3], page 3.5 of [4], or page 62 of [5].) In this paper we present an investigation of the simplicial d-arrangements that are associated in this way with a cross-polytope.

The case in which all of the hyperplanes of mirror symmetry and the hyperplane at infinity are included was resolved in [1], where we showed that the resulting d-arrangement is simplicial precisely for $d \leq 4$. Here we study the more general case.

Fourteen such simplicial arrangements are known. The four 2-arrangements $A_2(6), A_2(7), A_2(8)$, and $A_2(9)$ described on page 78 and pictured on page 87 of Grünbaum’s Catalogue of Simplicial Arrangements (pages 75–106 of [3]) are of this kind, as are the six 3-arrangements $A_3(12), A_3(13), A_3(14), A_3(15), A_3(17)$, and $A_3(18)$ described on pages 68–82 of Grünbaum and Shephard [5] (although this is not obvious for $A_3(13), A_3(14)$, or $A_3(15)$; see the proof of Theorem 5 below). And in [1] we described a 4-arrangement $A_4(33)$ of this kind.

Our objective here is to prove that, apart from three trivial 1-arrangements, no other d-arrangement so associated with a cross-polytope is simplicial.

We begin in Section 2 with a few preliminaries concerning d-arrangements in general and cross-polytopic d-arrangements in particular. In Section 3 we consider the cases $d \leq 3$, and in Section 4 we examine $d = 4$. The situation for $d \geq 5$ is settled in the concluding Section 5.

It is a pleasure to express our gratitude to Branko Grünbaum for his interest in our results.

2. Cross-polytopic d-arrangements

In this section we collect some of the basic facts and notations we shall employ throughout.

Write ∞^d (or just ∞) for the hyperplane at infinity. It will be convenient to take the r-cells formed by a d-arrangement \mathcal{A} to be closed and to call such a cell F' bounded, finite, or unbounded according to whether $F' \cap \infty^d = \emptyset$, $\dim(F' \cap \infty^d) < r$, or $\dim(F' \cap \infty^d) = r$. These definitions reflect our essentially Euclidean point of view.

If L' is any r-flat in \mathbb{P}^d with $0 < r \leq d$ and \mathcal{A} is a d-arrangement, the r-arrangement $\mathcal{A}|_{L'}$ induced by \mathcal{A} in L' (regarded as a \mathbb{P}^r) is the arrangement

$$\mathcal{A}|_{L'} = \{ F' \subseteq L' : F' \in \mathcal{A}, \dim(F' \cap L') = r - 1 \}.$$

Since for $1 \leq r \leq s$, every r-face of an s-simplex is an r-simplex, the following useful result is obvious.

Lemma 1. The r-arrangement $\mathcal{A}|_{L'}$ induced by a simplicial d-arrangement \mathcal{A} in each of its r-flats L', $1 \leq r \leq d$, is simplicial.

As a practical matter, to describe $\mathcal{A}|_{L'}$ it is generally easiest to obtain equations of the hyperplanes ($(r - 1)$-flats) of $\mathcal{A}|_{L'}$ by parametrizing L'.

We turn next to cross-polytopic arrangements. The cross-polytope C^d in \mathbb{R}^d is the convex hull of the $2d$ unit points whose coordinates are the permutations of $(\pm 1, 0, \ldots, 0)$. Basic facts about C^d can be found in Coxeter [2]; see Chapter VII, especially pp. 121, 122, 133.

Introduce homogeneous coordinates $(x_1, \ldots, x_d; x_0)$ in \mathbb{P}^d, with $x_0 = 0$ the hyperplane ∞^d at infinity. Then the 2^d facet hyperplanes of C^d have homogeneous equations

$$\pm x_1 \pm x_2 \pm \cdots \pm x_d = x_0. \tag{1}$$

The d^2 hyperplanes of mirror symmetry are of two kinds: there are d coordinate hyperplanes

$$x_i = 0, \quad 1 \leq i \leq d, \tag{2}$$

each of which contains all but two of the $2d$ vertices of C^d (from which it is equidistant), and there are $d(d - 1)$ hyperplanes with equations

$$x_i \pm x_j = 0, \quad 1 \leq i < j \leq d,$$

each of which lies midway between two parallel opposite edges of C^d (from