Choroideremia associated with an X-autosomal translocation

Victoria M. Siu*, John R. Gonder2, Jack H. Jung1, Frederick R. Sergovich1, and Wayne F. Flintoff3

1Regional Medical Genetics Centre, Department of Paediatrics, Children's Hospital of Western Ontario, 2Ivey Institute of Ophthalmology, and 3Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada

Received April 11, 1989 / Revised October 5, 1989

Summary. A patient with mild choroideremia has been shown to carry a balanced translocation between chromosome X and 13 - 46,X,t(X;13)(q21.2;p12). Loci (DXY21, DX232, DX233) shown to map to this region on the X chromosome and in some cases to be deleted in other patients with choroideremia are intact in the DNA from this patient. To our knowledge this is the first report of a translocation associated with choroideremia. One of the translocation chromosomes, derivative 13, free of the derivative X and normal X, has been isolated in a somatic cell hybrid. Because of the clinical association of the eye findings with chromosome interchange, we suggest that the breakpoint on the X is at or near the choroideremia locus. Further analysis of this translocation may be useful in cloning the choroideremia gene.

Introduction

Choroideremia is a rare X-linked recessive degenerative disease of the eye characterized by diffuse progressive degeneration of the retinal pigment epithelium and choriocapillaris (McCulloch and McCulloch 1948; Sorsby et al. 1952). In the first decade of life, affected males show night blindness and a progressive loss of peripheral vision. Blindness in most affected males eventually occurs by the third or fourth decade of life (McCulloch and McCulloch 1948; Sorsby et al. 1952). Female carriers are asymptomatic but can be diagnosed due to a characteristic patchy pigmentation of the optic fundus (McCulloch 1948). At present, the biochemical basis of the defect is unknown (Rodrigues et al. 1984).

The gene locus for choroideremia has been mapped to the region Xq13-q21, using a series of restriction fragment length polymorphisms (Nussbaum et al. 1985; Schwartz et al. 1986, 1988; Sankila et al. 1987; Lesko et al. 1987). The availability of these probes has permitted a more refined location of the gene locus, which has been facilitated by the identification of several male choroideremia patients with cytogenetically detectable deletions in this region (Cremers et al. 1987, 1989; Nussbaum et al. 1987; Schwartz et al. 1988). Several of these patients have associated mental retardation and deafness (Nussbaum et al. 1987; Cremers et al. 1989).

In this report, we describe a female patient with mild choroideremia and premature ovarian failure, who carries a de novo balanced translocation. The breakpoints were through q21.2 on the X chromosome and through the nucleolar organizing region of chromosome 13 - 46,X,t(X;13)(q21.2;p12). The derivative chromosome 13, free of normal X and derivative X chromosomes, has been isolated in a somatic cell hybrid with a mouse cell line. Molecular probing of the patient’s DNA indicates loci (DXY51, DX232, DX233) known to map to this chromosomal region on the X chromosome have remained intact.

Materials and methods

Case report

A 28-year-old woman presented with primary infertility. At 16 years of age she had undergone menarche with subsequent menses occurring once a year. The oligomenorrhea was attributed to obesity as she was then 35 lb overweight. She was started on a low-dose estrogen oral contraceptive at age 19 and experienced regular withdrawal bleeding for 2 years. When this treatment was temporarily discontinued, she had no menses. The oral contraceptive was taken for another 6 years. She began experiencing hot flashes and marked mood changes. Endocrine investigations revealed serum concentrations of follicle-stimulating hormone and luteinizing hormone at post-menopausal concentrations: 74 mIU/ml, and 91 mIU/ml, respectively. Serum prolactin level was normal. Cyclical treatment with conjugated estrogens (Premarin, Ayerst) 0.625 mg p.o. for 25 days followed by medroxyprogesterone acetate (Provera, Upjohn) 10 mg p.o. for 5 days resulted in regression of symptoms.

During a routine eye examination, at age 29, the patient was found to have bilateral diffuse retinal pigment epithelial mottling. Further questioning revealed that she had experienced symptoms of night blindness. There was no family history of ocular disease. On clinical examination the best corrected central visual acuity was 20/20 in both eyes reading J1 print. The anterior segment was normal with no posterior subcapsular cataracts noted. There was the occasional pigment cell in the vitreous. On indirect ophthalmoscopy, pigmentary mottling at the level of the retinal pigment epi-
thelium (RPE) was noted. In the midperiphery scalloped areas of RPE and choriocapillaris loss were noted. There was one area of RPE hyperplasia but no areas of RPE migration into the retina. The optic disc and retina vessels appeared normal. In the subretinal space or deep retina near the optic disc, white calcific tumors were noted. Fluorescein angiography highlighted the RPE mottling and the RPE and choriocapillaris choroidal neovascularization. The subretinal tumors stained late. On B scan ultrasonography the tumors demonstrated high reflectivity consistent with calcification. The electroretinogram and color vision (Fansworth-Munsell 100 Hue test) were normal. The electrooculogram was abnormal with reduced Arden ratios of 1.4 and 1.28 for the right and left eyes, respectively. Clinical evaluation and diagnostic testing during a 2-year follow-up have not demonstrated progression of the ocular dystrophy.

Presently, at age 30, the propositus enjoys good health. She is of normal intelligence and on physical examination is a normal female with good hearing, no congenital anomalies, and no stigmata of Turner syndrome.

Family history
The proband is of Irish-English descent and is the oldest of a sibship of five. Her two sister underwent menarche at age 11 and have regular menses. Neither has children. One brother has a son and the other is unmarried. There were also fraternal twins who were stillborn. Ophthalmological examination of both parents and three of the proband's four siblings were normal. The remaining sibling, a brother, remains to be examined.

Cytogenetics
Trypsin-Giemsa (Seabright 1971) and quinacrine banding (Breg 1971) were carried out on metaphase chromosome preparations from cultured leucocytes and skin fibroblasts. To identify nucleolar organizing regions (NOR), silver nitrate staining of metaphase chromosome spreads was performed (Dittes et al. 1975). Late replicating chromosomal DNA sequences were assessed using the bromodeoxyuridine/acridine orange technique described by Latt (1975).

DNA analysis
DNA was isolated from skin fibroblasts or Epstein-Barr transformed lymphoblasts from the proband, family members, a normal female control, a continuous cell line (mouse A9), and the hybrid cell lines (see below) by the sodium dodecyl sulphate (SDS) proteinase K procedure (Gross-Bellard et al. 1978). Briefly, washed cells were lysed with 1% SDS and the protein digested at 37 °C overnight with 50 μg/ml proteinase K. After phenol-chloroform extraction, the DNA was dialyzed against several changes of dialysis buffer (10 mM TRIS-HCl, pH 7.4, 0.1 mM EDTA) and digested with the indicated restriction endonuclease using the conditions described by the manufacturer (Pharmacia). The restriction fragments were separated on a 1% agarose gel in TAE [50 mM TRIS (hydroxymethyl) aminomethane (TRIS), 20 mM Na acetate, 2 mM ethylene diaminetetraacetic acid (EDTA), pH 8.0] and subjected to electrophoresis overnight at 40 V. The DNA was transferred to nitrocellulose paper by the method of Southern (1975), baked in vacuo at 80 °C, and incubated at 42 °C in 50% formamide, 5× SSC (1× SSC is 0.15 M NaCl, 0.015 M Na citrate), 5× Denhardt's solution (Denhardt 1968), 100 μg/ml denatured, sheared salmon sperm DNA, and 300 μg/ml yeast RNA. After 18 h of prehybridization approximately 2×10^6–5×10^6 cpm/ml of labelled probe DNA was added to the hybridization mixture and incubation continued at 42 °C for 48 h. The blots were washed at room temperature for 3×20 min in 2× SSC-0.1% SDS, at 52 °C for 3×20 min in 0.1× SSC-0.1% SDS, air dried, and exposed to X-ray films with Cronex intensifying screens.

Molecular probes and radiolabelling
Probe pDP34, obtained from the American Type Culture Collection, is a 2.2-kb single-copy genomic DNA sequence that detects the locus DXYS1 (Page et al. 1982) with two TaqI alleles of 11 and 12 kb on the X chromosome and a 15-kb TaqI allele on the Y chromosome. DXYS1 has been previously mapped to Xq13–Xq21 by in situ hybridization and linkage analysis.

Probes pJL8 and pJL68 (0.57 and 1.45 kb, respectively) are cloned, single-copy genomic sequences that detect the loci DXS233 and DXS232, respectively. These probes were kindly supplied by Dr. R. Nussbaum and were isolated by the phenol-enhanced reassociation technique (Nussbaum et al. 1987). These X-chromosome probes are deleted in several patients with choroideremia, X-linked mental retardation and deafness (Nussbaum et al. 1987; Cremers et al. 1989).

Probe cDMD 1-2a was obtained from the American Type Culture Collection and detects the loci DXS142, DXS206, and DXS164 in the chromosome region Xp21.2, which encompasses the Duchenne muscular dystrophy locus.

DNA used as probes were radiolabelled with 32P-dCTP (specific activity ~ 3200 Ci/mmol, ICN radiochemicals) and 32P-dGTP (specific activity ~ 3200 Ci/mmol, ICN radiochemicals) using the random priming procedure described by Feinberg and Vogelstein (1983). Routinely, DNAs were labelled to a specific activity of 4×10^8 cpm/μg DNA.

Somatic cell hybridization
Cultured skin fibroblasts from the patient were hybridized to mouse A9 cells deficient in hypoxanthine phosphoribosyltransferase (HPRT) by treatment with polyethylene glycol 1540 (British Drug House Chemicals) to induce fusion as previously described (Flintoff 1984) except that the fusion was carried out in suspension. After growth for 2 days in Alpha medium (Stanners et al. 1971) supplemented with 10% fetal bovine serum (Bocknek Industries), hybrids were selected by their growth in selective HAT-ouabain medium (alpha medium containing 10 μg/ml hypoxanthine, 10-4 M methotrexate, 10 μg/ml thymidine and 3μM ouabain). After 2 weeks growth, individual colonies were picked, maintained in selective medium, and karyotyped as described above.

Results
Cytogenetics
The ophthalmologic evaluation of this patient suggested that the retinal pigmentary changes were consistent with the early stages of either choroideremia or retinitis pigmentosa. Since the loci for X-linked retinitis pigmentosa (Musarella et al. 1988) and choroideremia (Cremers et al. 1989) are located on the short and long arms, respectively, of the X chromosome, a cytogenetic evaluation of the patient was undertaken to determine whether chromosomal alterations could be detected in either region of this chromosome.

With quinacrine fluorescence banding, all cells examined from the proband showed the presence of an apparently balanced reciprocal translocation between the long arm of the X chromosome and the short arm of chromosome 13. Trypsin-Giemsa banding indicated that the breakpoint in the X was at region q21.2 and in chromosome 13 at region p12 (Fig. 1). This yielded two translocation chromosomes, a derivative 13, der (13), and a derivative X, der (X) (Fig. 2). The karyotype of the