The Sda Blood Group in Human Secretions

G. Pappalardo1, R. Conte2, G. Fortuni1, and A. Vercelli1

1Institute of Legal Medicine, University of Bologna, via Irnerio 49, I-40126 Bologna, Italy
2Blood Transfusion Service, S. Orsola Hospital, I-40138 Bologna, Italy

Summary. The authors, employing the absorption-inhibition technique, have further extended their experiments on human biologic fluids to investigate the Sid substance. It was located in tears, sweat, nasal and tracheobronchial mucus, cerebrospinal fluid, and in aqueous humor while it was not found in bile (in accordance with its absence in liver tissue).

The authors emphasize the significance that the verification of the Sid substance may assume in forensic investigations with the purpose of individual diagnosis in stains of the above mentioned secretions, particularly tears, sweat, and nasal mucus.

Key words: Blood groups, Sda in human secretions – Sda in human secretions – Human secretions, Sda group

Zusammenfassung. Die Autoren haben mit Hilfe der Absorptions-Inhibitions-Technik die Skala der menschlichen biologischen Flüssigkeiten, in denen man die Substanz Sid sucht, noch erweitert.

Sie haben auf diese Weise die Präsenz in der Tränenflüssigkeit, im Schweiß, im Nasen- und Luftröhreenscheim, im Liquor und im Kammerwasser nachgewiesen, während die Substanz sich nicht in der Galle befindet (entsprechend der gegebenen Negativität des Lebergewebes).

Die Autoren unterstreichen die Bedeutung, die der Nachweis der Substanz Sid im gerichtsmedizinischen Labor einnehmen kann mit der Perspektive einer individuellen Diagnose in Flecken der besagten Sekrete, besonders von Tränen und Schweiß.

Schlüsselwörter: Blutgruppen, Sda in menschlichen Sekreten – Sda Gruppenantigen in menschlichen Sekreten – Menschliche Sekreten, Sda Blutgruppe

Offprint requests to: Prof. Dr. G. Pappalardo (address see above)
Macvie et al. [1] and Renton et al. [2] identified in 1967 the human blood group Sd\(^a\), present on red cells and also in most tissues and secretions, with the highest concentration in meconium and urine [3].

Sd\(^a\) character is inherited as dominant and individuals can be better classified into the two phenotypes Sd(a\(^+\)) and Sd(a\(^-\)) with the urinary test because individually there are considerable variations in the strength of agglutination of Sd\(^a\) antigen on red cells; normally, the pattern of agglutination of the Sd\(^a\) blood group is similar to a mixed field; only Cad Sd(a\(^++\)) or super Sid—a very strong form of Sd\(^a\)—is well agglutinable.

On red cells Sd\(^a\) is absent at birth and often disappears in pregnancy.

Sd\(^a\) activity seems to depend on a terminal N-acetyl-D-galactosamine [4] and according to Morgan et al. [5–7] it is closely associated with the Tamm and Horsfall (T-H) urinary glycoprotein.

Recently, employing absorption-inhibition techniques, Conte and Pappalardo [8] demonstrated the presence of Sd(a\(^+\)) also in semen and vaginal secretion with positive findings in 11-year-old semen stain.

Moreover, the same authors [9] pointed out the utility in forensic laboratory of such a stable marker with the purpose of typifying also individual urine stains.

In this paper we report the results of some research studies on the Sd\(^a\) activity in other previously untested biologic fluids.

Materials and Methods

Samples of urine, saliva, sweat and tears were obtained from healthy adults: 14 Sd(a\(^+\)) and 1 Sd(a\(^-\)). Insoluble material was removed as soon as possible after collection by centrifuging at 3,000 rpm/10 min for the large volumes of urine and saliva; at 10,000 rpm/10 min with microhematocrit centrifuge in microtubes Kartell for the small volumes of sweat and tears. All samples were kept frozen until examination. In seven cases with Sd(a\(^+\)) only sweat and tears were sufficient to estimate also inhibition titers of the substance: comparison with the titers of corresponding urines and saliva was limited to this group.

Normal cerebrospinal fluids of 5 Sd(a\(^+\)) leukaemic children were made available by Clinical Pathology Laboratories of S. Orsola Hospital, Bologna, where they had been examined and meningopathy excluded.

Other secretions: aqueous humor, bile and tracheobronchial mucus were obtained at post-mortem from thirteen corpses, 12 Sd(a\(^+\)) and 1 Sd(a\(^-\)) as tested in urine from gall bladder puncture, selected for absence of pathologic changes in the districts of drawing. Tracheobronchial secretions removed clean by glass stick were immediately diluted about v/v in saline. All specimens were centrifuged with the aid of micro haematocrit centrifuge and the supernatant was frozen until examination.

Nasal secretions were obtained from 5 Sd(a\(^+\)) normal volunteers by inserting 2–3 times into the nose swabs of cotton soaked in saline, then squeezed in microtubes. Insoluble material was removed by centrifuging at 10,000 rpm/10 min and residual liquid frozen.

Moreover, for two persons treated on another day the method of collection consisted in instilling into each nostril 5 ml of water while the subject held his head hyperextended, his tongue elevated, and the glottis closed. The washing fluid was then partly recovered in a Petri dish when the head was tilted forward; after centrifugation at 10,000 rpm/10 min, the supernatant was lyophilized and diluted with 0.2 ml of saline upon examination.

Anti-Sd\(^a\) serum, obtained from an unimmunized blood donor (B. Nat.) identified in 1976 by the Transfusion Service, S. Orsola Hospital, Bologna, and kindly controlled by Renton and Pickless, was employed as in previous research studies.

In the operative conditions of the inhibition test (2 volumes of undiluted serum, 1 volume of fluid under test or of control saline, 1 volume of 10% suspension of red cells) the titer was 1:4.