The use of heteronuclear cross-polarization for backbone assignment of 2H-, 15N- and 13C-labeled proteins: A pulse scheme for triple-resonance 4D correlation of sequential amide protons and 15N

Masahiro Shirakawa a,*, Markus Wälchli b, Masato Shimizu a and Yoshimasa Kyogoku a

a Institute for Protein Research, Osaka University, Suita, Osaka 565, Japan
b Bruker Japan, 21-5, Ninomiya 3-chome, Tsukuba, Ibaraki 305, Japan

Received 4 January 1995
Accepted 1 March 1995

Keywords: Heteronuclear NMR; Deuterium labeling; Cross-polarization; Triple-resonance experiment; Pulse scheme

Summary

A new four-dimensional pulse scheme is described for the main-chain assignment of proteins by means of the J connectivity of the amide proton and nitrogen resonances of adjacent residues. Since the new experiment, 4D CP-HN(COCA)NH, involves heteronuclear cross-polarization for magnetization transfer from 13C=O to 15N via 13C, a relatively strong WALTZ-16 decoupling rf field is applied to 13C during magnetization transfer. Consequently, 13C is effectively decoupled from its attached 2H in the case of deuterated proteins, in the absence of a decoupling rf field for 2H. This efficiently improves the sensitivity of the experiment through 13C line narrowing. The experiment was performed on a randomly 60% deuterated protein, and the sensitivity of the final 4D spectrum was found to be excellent.

The development of multidimensional triple-resonance NMR techniques has enabled studies of the solution structures of 'medium-size' proteins with molecular masses smaller than 25 kDa (Ikura et al., 1990; Kay et al., 1990; Bax and Grzesiek, 1993). The highest barrier for their application to larger proteins is the short transverse relaxation time, T_2, of 13C, since magnetization transfer passes 13C in most multidimensional triple-resonance NMR experiments. The 13C transverse relaxation is dominated by a strong dipolar interaction with 1H. Since the gyromagnetic ratio of 2H is 6.5 times smaller than that of 1H, the transverse relaxation of 13C due to the dipole interaction is reduced by deuteration at the 1H site. However, due to scalar relaxation of the second kind (Abragam, 1961), the 13C line width is still broadened by deuteration at magnetic fields of 10–15 T. Several groups have shown that 2H decoupling during the periods of transverse 13C magnetization efficiently eliminates the effect of scalar relaxation of the second kind, and thereby results in 13C line narrowing (Grzesiek et al., 1993; Kuslan and LeMaster, 1993; Yamazaki et al., 1994).

However, high-power deuterium decoupling (more than several hundred Hz) leads to additional hardware demands. Another radiofrequency channel is required, in addition to the three rf channels for 1H, 15N and 13C for triple-resonance NMR experiments. Moreover, the 2H channel causes instabilities of the 2H lock, unless 2H lock-holding and -blanking of the 2H channel for decoupling are used. A 2H lock coil in the NMR probe, sufficiently stable for high-power 2H decoupling, is also required.

Recently, several groups have shown that heteronuclear cross-polarization (CP) in solution is as practical for magnetization transfer as pulsed sequences, such as INEPT or DEPT (Zuiderweg, 1990; Ernst et al., 1991; Majumdar et al., 1993; Richardson et al., 1993; Schleucher et al., 1994). It has also been shown to be beneficial under some circumstances, in comparison with corresponding pulsed transfers, such as INEPT (Majumdar et al., 1993; Richardson et al., 1993).

In this communication, we present a new four-dimensional triple-resonance experiment which directly correlates the amide proton and nitrogen resonances of adjacent residues. In contrast to a related experiment introduced by Grzesiek et al. (1993), our experiment involves

*To whom correspondence should be addressed.
heteronuclear cross-polarization in solution (Ernst et al., 1991) instead of INEPT for the magnetization transfer from 13C=O to 15N via 13C$. Since a strong WALTZ-16 decoupling rf field (more than 1.9 kHz) is applied to 13C during the magnetization transfer, 13C is effectively decoupled from its attached 2H. Thus, applying this pulse sequence with heteronuclear CP to deuterated proteins, we can expect a longer transverse relaxation time for 13C attached to 2H, which results in more efficient magnetization transfer from 13C=O to 15N through 13C in the absence of 2H decoupling.

Figure 1 illustrates the pulse sequence employed in the experiment. According to the convention introduced by Kay and co-workers (1990), we name the experiment CP-HN(COCA)NH. The flow of magnetization is the same as in the HN(COCA)NH experiment introduced by Grzesiek et al. (1993). After 1H(i+1) chemical shift evolution during t_1, magnetization is transferred to the attached amide nitrogen 15N(i+1) through INEPT transfer at time point a. In the constant-time evolution period, $2T$, and during the subsequent 15N and 13C=O 90° pulses, the magnetization is relayed to 13C=O(i) at time b, and in-phase 13C=O(i) magnetization appears at time c, after rephasing caused by $^1J(13^{N}(i+1)-13^{C}=O(i))$. From time c to time d, a WALTZ-16 rf field is applied to 13C=O and 13C at the same field strength, using double selective rectangular pulses, generated by a single rf channel (Vincent et al., 1993; Ito, Y. and Laue, E.D., personal communication). During this period, transverse in-phase 13C=O(i) magnetization is transferred to in-phase 13C(i) magnetization by heteronuclear CP (Ernst et al., 1991). Just after the field gradient pulse z-filter, 13C=O-15N CP takes place by the application of a WALTZ-16 decoupling field from time e to time f. In-phase 13C(i) magnetization is transferred either to 15N(i), which relies on the intraresidue $^1J_{CN}$ (\sim 11 Hz) coupling and gives a larger signal in the final spectrum, or to 13N(i+1), which relies on the interresidue $^2J_{CN}$ (\sim 7 Hz) coupling and gives a smaller signal. Since the WALTZ-16 decoupling rf field, which is applied to 13C at the same field strength, during both CP periods, is sufficiently high (more than 1.9 kHz, which is several times larger than the $T_1(2$H$)$ relaxation rate) (Grzesiek et al., 1993), the scalar relaxation of the second kind of 13C by its attached 2H is efficiently removed, without an additional 2H decoupling field. The 15N(i) and 13N(i+1) magnetization is dephased relative to their attached protons, and relayed to 1H(i) and 1H(i+1), respectively, at time g. Finally, the 1H(i) and 1H(i+1) transverse magnetization is refocused and