Tcrb-V3⁺ T-cell deletion and a mouse mammary tumor provirus, *Mtv-27*

Kyuhei Tomonari, Sue Fairchild, and Oliver A. Rosenwasser

Transplantation Biology Section, MRC Clinical Research Centre, Watford Road, Harrow HA1 3UJ, UK

Received February 3, 1992

Abstract. Genes encoding superantigens which delete Tcrb-V3⁺ T cells co-segregate with mouse mammary tumor proviruses (*Mtv*), *Mtv-1*, *Mtv-3*, *Mtv-6*, *Mtv-13*, and *Mtv-44*. We have examined percentages of Tcrb-V3⁺ T cells and *Mtv* integrations in ([B10 × NZB]F1 × B10.BR) mice, and show that *Mtv-27* as well as *Mtv-3* from NZB mice co-segregate with genes encoding deletion ligands for Tcrb-V3⁺ T cells without recombination.

Introduction

Superantigens in association with major histocompatibility complex (MHC) class II molecules delete certain Tcrb-V-bearing T cells at a CD4⁺CD8⁺ stage of differentiation in the thymus (Kappler et al. 1987, 1988; MacDonald et al. 1988). These antigens are thought to be encoded by mouse mammary tumor viruses (MMTV): genes encoding endogenous superantigens co-segregate with mouse mammary tumor provirus (*Mtv*) genomes without recombination (Woodland et al. 1990, 1991a; Frankel et al. 1991; Tomonari and Fairchild 1992).

Furthermore, *Orf* genes in the 3' long terminal repeat sequence (LTR) of *Mtv* and exogenous MMTV have been shown to confer superantigen activity on the transfected cells and in the transgenic mice (Choi et al. 1991; Acha-Orbea et al. 1991; Woodland et al. 1991b; Pullen et al. 1988). It has been shown that superantigens encoded by these viral genomes specifically delete certain Tcrb-V-bearing T cells: *Mtv-1*, *Mtv-3*, *Mtv-6*, *Mtv-13*, and *Mtv-44* for Tcrb-V3⁺ T cells (Frankel et al. 1991; Fairchild et al. 1991, 1992), *Mtv-6* and *Mtv-9* for Tcrb-V5⁺ T cells (Woodland et al. 1990, 1991a; Acha-Orbea and Palmer 1991), *Mtv-7* and *Mtv-44* for Tcrb-V6⁺, Tcrb-V8.1⁺, and Tcrb-V9⁺ T cells (Frankel et al. 1991; Tomonari and Fairchild 1992), *Mtv-7* for Tcrb-V7⁺ T cells (Frankel et al. 1991), *Mtv-8*, *Mtv-9*, and *Mtv-11* for Tcrb-V11⁺ T cells (Dyson et al. 1991; Woodland et al. 1991a), and MMTVs for Tcrb-V14⁺ T cells (Marrack et al. 1991; Choi et al. 1991; Acha-Orbea et al. 1991). In this paper we examined segregation of *Mtv* genomes and genes encoding deletion ligands for Tcrb-V3⁺ T cells in ([B10 × NZB]F1 × B10.BR) mice.

Materials and methods

Mice. C57BL/10 (B10) and B10.BR mice were obtained from the Clinical Research Centre (Harrow, UK). NZB mice were obtained from Ouac (Bicester, UK). ([B10 × NZB]F1 × B10.BR) mice were produced in the Clinical Research Centre.

Analysis with a fluorescence-activated cell sorter (FACS). 1.2 × 10⁶ mesenteric lymph node cells were stained as described previously (Tomonari and Fairchild 1991). First step reagents were fluorescein isothiocyanate (FITC)-coupled antibodies, KT15 (anti-CD8c⁺; Tomonari and Spencer 1990) and KT6 (anti-CD4; Tomonari and Fairchild 1991), and biotinylated antibody KJ25 (anti-V33; Pullen et al. 1988). Streptavidin phycoerythrin (Biogenesis, Bournemouth, UK) was used as a second step reagent. 5 × 10⁴ cells were examined by two-color FACS analysis (FACStarPLUS, Becton-Dickinson, Mountain View, CA).

Southern blot analysis. 15 µg of DNA, prepared as described previously (Maniatis et al. 1982), was digested with EcoRI (Gibeo BRL, Uxbridge, UK) and restricted fragments were separated through 0.7% agarose and transferred to nylon membranes (Genescreen, DuPont, Boston, MA). An *Mtv* LTR probe, generated from the 3' end of *Mtv*-9 with Bgl II and Msp I, was labeled with random oligo primed α³²PdCTP to 10⁸ cpm/µg. Following overnight hybridization with the probe at 65°C, filters were washed at high stringency [0.1 x standard sodium citrate (SSC), 0.1% sodium dodecyl sulfate (SDS)] for 90 min at 65°C, dried and exposed for 24 h to Kodak X-ray film with intensifying screens.

Address correspondence and offprint requests to: K. Tomonari.
Results

Two genes are responsible for Tcrb-V3+ T-cell deletion in NZB mice. NZB and (B10 × NZB)F1 hybrid mice delete Tcrb-V3+ T cells (0.1%–0.2%), whereas B10 and B10.BR mice do not (3.1%–5.0%). To examine the number of genes responsible for the deletion in NZB mice, (B10 × NZB)F1 hybrid mice were crossed with B10.BR mice. Percentages of peripheral Tcrb-V3+ T cells from [B10 × NZB]F1 × B10.BR mice were then examined by two-color FACS analysis (Fig. 1). Of the 84 offspring, 17 mice (20%) did not delete Tcrb-V3+ T cells (2.6%–4.7%), whereas 67 mice (80%) completely deleted these T cells (0.0%–0.2%). This ratio suggests that two genes independently encode deletion ligands for these T cells.

Co-segregation of genes encoding deletion ligands for Tcrb-V3+ T cells with Mtv-3, Mtv-7, and/or Mtv-27. Because a number of Mtv genomes co-segregate with genes encoding deletion ligands for Tcrb-V3+, Tcrb-V5+, Tcrb-V6+, Tcrb-V7+, Tcrb-V8.1+, Tcrb-V9+, and Tcrb-V11+ T cells in various inbred mice (Woodland et al. 1990, 1991a; Frankel et al. 1991; Dyson et al. 1991; Fairchild et al. 1991, 1992; Pullen et al. 1992; Tomonari and Fairchild et al. 1992), Mtv integration was examined in DNA from the 84 [(B10 × NZB)F1 × B10.BR] mice by Southern blot analysis using the Mtv LTR probe. Representative blots from 41 mice (27 deletor and 14 nondeleter) are shown in Figure 2. NZB mice have Mtv-3 [(19.3 and 6.7 kilobases (kb)], Mtv-7 (16.5 and 12.0 kb), Mtv-9 (9.7 and 7.4 kb) Mtv-14 (1.7 kb, not shown in Figure 2), Mtv-17 (9.9 and 7.9 kb), Mtv-27 (11.4 kb) and Mtv-28 (5.8 kb). B10 and B10.BR mice have Mtv-8 (7.7 and 6.3 kb), Mtv-9 (9.7 and 7.4 kb), and Mtv-17 (9.9 and 7.9 kb). The 67 [(B10 × NZB)F1 × B10.BR] mice which completely deleted Tcrb-V3+ T cells inherited Mtv-3, Mtv-7, and/or Mtv-27. Although Mtv-7 is closely linked to Mtv-27 on chromosome 1 (Eicher and Lee 1990), there was one recombinant offspring (with Tcrb-V3+ T-cell deletion in the absence of Mtv-3) which inherited Mtv-27 but not Mtv-7 (arrow in Figure 2). Neither Mtv-3, Mtv-7, nor Mtv-27 was inherited by the 17 offspring which did not delete these T cells.

Discussion

The above data suggest that Mtv-3 and Mtv-27 in NZB mice encode deletion ligands for Tcrb-V3+ T cells. Although Mtv-7 co-segregated with Mtv-27 and a gene encoding the deletion ligand, it is likely that Mtv-27 but not Mtv-7 encodes the deletion ligand. The reasons are twofold. First, there was a recombinant Mtv-7 Mtv-27+ mouse which deleted Tcrb-V3+ T cells in the absence of Mtv-3. Secondly, in other strains of mice Mtv-7 co-segregates with a gene encoding a deletion ligand for Tcrb-V6+ T cells but not for Tcrb-V3+ T cells (Frankel et al. 1991; Lee and Eicher 1990; our unpublished data). Because we have not yet found any Mtv-3 ‘Mtv-7+ Mtv-27-’ [(B10 × NZB)F1 × B10.BR] mouse, the possibility that Mtv-7 of NZB mice encodes a deletion ligand for Tcrb-V3+ T cells remains to be determined. Mtv-27 is thought to be located 7 centimorgan downstream from Mtv-7 on chromosome 1 (Hillyard et al. 1991). However, this distance appears to be much shorter as we found only one recombinant offspring (Mtv-7 ‘Mtv-27+’) out of 84 [(B10 × NZB)F1 × B10.BR] mice (Fig. 2).

Mtv-27 is a sixth Mtv genome which deletes Tcrb-V3+ T cells in addition to Mtv-6, Mtv-13, Mtv-3, Mtv-1, and Mtv-44 which have previously been shown to delete these T cells (Frankel et al. 1991; Fairchild et al. 1991, 1992; Pullen et al. 1992). Of these, Mtv-6 and Mtv-44 also delete T cells bearing other Tcrb-V elements: Tcrb-V5+ T cells by Mtv-6 (Acha-Orbea and Palmer 1991) and Tcrb-V6+, Tcrb-V8.1+, and Tcrb-V9+ T cells by Mtv-44 (Tomonari and Fairchild 1992). If the specificity for Tcrb-V elements is determined by the carboxy terminal region of Orf proteins as proposed (Choi et al. 1991; Pullen et al. 1992), then the proteins encoded by Mtv-1, Mtv-3, Mtv-13, and possibly by Mtv-27 and Mtv-44 would also be expected to delete Tcrb-V5+ T cells because amino acid sequences of these former three proteins and the Mtv-6 Orf are the same or nearly identical (Pullen et al. 1992). Similarly, Orf proteins encoded by Mtv-8 and Mtv-11 would be expected to delete Tcrb-V5+ T cells, because the Mtv-9 Orf, which is very similar to these in amino acid sequence (Choi et al. 1991), has been demonstrated to delete Tcrb-V5+ T cells (Woodland et al. 1990, 1991a). Furthermore, the Mtv-8 Orf has been