Reduction of 2,3,5-triphenyltetrazolium chloride by the KCN-insensitive, salicylhydroxamic acid-sensitive alternative respiratory pathway of mitochondria from cultured grapevine cells

J.M. Zapata, C. Salinas, A.A. Calderón, R. Muñoz, and A. Ros Barceló

Department of Plant Biology (Plant Physiology), University of Murcia, Campus of Espinardo, E-30071 Murcia, Spain

Received June 24, 1991/Revised version received September 20, 1991 - Communicated by A. Boudet

ABSTRACT
The reduction of 2,3,5-triphenyltetrazolium chloride (TTC) by grapevine cells cultured in suspension was studied in order to assess the reliability of using TTC reduction as a measure of cell viability. Similar to the reduction observed in animal cells, I]C can be reduced in grapevine cells by the cytochrome respiratory path of the mitochondria, although it is mostly reduced (about 72%) by the alternative respiratory path sensitive to salicylhydroxamic acid. Engagement of the alternative path in TTC reduction was calculated through the dependence of respiration on oxygen tension, and was established to be 89%.

Abbreviations: SHAM, salicylhydroxamic acid; TTC, 2,3,5-triphenyltetrazolium chloride

INTRODUCTION
Cyanide resistant respiration is a characteristic of mitochondria isolated from a wide range of plant tissues (Laties 1982). It results from the transfer of electrons to oxygen via an alternative pathway branching from the cytochrome path at the ubiquinone level (Laties 1982). As the phosphorylation sites of the cytochrome path are bypassed, operation of the alternative path is energetically inefficient and a knowledge of the activities of the alternative and cytochrome paths in vivo is necessary to evaluate the energy available for metabolic processes (Lambers 1982).

In plant respiratory studies, it is generally assumed that the cytochrome path is preferentially used and that the alternative pathway only participates in respiration when the cytochrome path is saturated or inhibited (Lambers 1982). On the basis of this assumption, the activity of the cytochrome and of the alternative path are often measured (Day et al. 1980) by the addition to respiring mitochondria of salicylhydroxamic acid (SHAM), a specific inhibitor of the alternative pathway (Schonbaum et al. 1971). Thus, the capacity of the alternative pathway disappears after the addition of hydroxamic acid, and it is measured as the hydroxamic acid sensitive part of total KCN non-inhibited respiration (Day et al. 1980).

Tetrazolium salts (i.e. 2,3,5-triphenyltetrazolium chloride, TTC) are well-known compounds with high redox potentials which can be inserted into the mitochondrial respiratory chain and are often reduced to deeply coloured formazans (Möllering et al. 1974). Due to this property, they have been frequently used to determine the viability of cultured cells (see Yokohama et al. 1990). They have the advantage over other methods used to determine cell viability that the amount of the end product (the formazan) can be determined spectrophotometrically. We found that this method is less subjective than counting individual cells, which are frequently difficult to distinguish by microscopic observation, after vital staining (Huang et al. 1986).

In animal cells, most tetrazolium salts are reduced in the cytochrome respiratory chain before the antimycin block, although TTC appears to be reduced after it (Möllering et al. 1974). However, to the best of our knowledge, there are no reports for plant cells on the site of TTC reduction in the two respiratory chains of mitochondria.

In this report we examine the effects of various respiratory chain inhibitors on the capability to reduce TTC by grapevine mitochondria in order to assess the reliability of using TTC reduction as a measure of cell viability. Evidence is presented which suggests that TTC is reduced by the KCN-insensitive SHAM-sensitive alternative pathway of the respiratory chain of grapevine mitochondria.

MATERIAL AND METHODS
Cell cultures
Callus was obtained from immature pericarp tissue of
Monastrell grapes (*Vitis vinifera* L. cv. Monastrell) of approx. 5 mm diameter, and cultured in Gamborg's 85 medium (Gamborg et al. 1968), supplemented with casein hydrolysate (250 mg/L), kinetin (1.0 μM), α-naphthalene acetic acid (0.5 μM) and 2% (w/v) sucrose.

Cultures were maintained in the dark and subcultured at approximately three-week intervals. Starting from friable callus, grape cells were cultured in suspension in the above described culture medium in 100 mL flasks with orbital shaking (250 rpm). Suspension cultured cells were grown 25°C in darkness.

TTC reduction assay
To study the ability of cells to reduce TTC, about 0.4 g of fresh cells were suspended in 10 mL of 50 mM K-phosphate buffer (pH 7.0) containing 15 mM TTC. After incubation overnight in the dark at 25°C, about 0.1 g of cells were recovered by filtration on GF/A fibre glass filters. The formazan was extracted by heating in 6 mL of 95% ethanol at 60°C for 15 min. The formazan was quantified by measurement of absorbance at 485 nm. Conversion of the absorbance values to μmoles of TTC reduced was carried out by calibration with an external standard obtained by reduction of TTC in water with an excess of sodium dithionite.

The effect of the following inhibitors on the TTC reduction assay was monitored: i) KCN and antimycin A (from a 200 μM stock in methanol) as well known inhibitors of the cytochrome pathway of respiration, and ii) salicylhydroxamic acid (from a 1.75 M stock in 2-methoxyethanol) as inhibitor of the cyanide-resistant alternative respiratory pathway (Schonbaum et al. 1971). Solvents, at the concentration used, had no effect on the TTC reduction assay. Inhibitors were added 45 min before the addition of TTC.

RESULTS AND DISCUSSION

Optimum pH and localization of the TTC reduction product in grapevine cells
Reduction of TTC by grapevine cells shows a strong dependence on external pH, having an optimal value at pH 7.0 (Fig. 1). At this pH, reduction of TTC was almost totally enzymatic since it was lowered by 95% after heating (100°C for 5 min). Linearity with respect to the cell fresh weight was reached under our assay conditions up to values of 35 μmol of TTC reduced after 16 h of incubation at 25°C.

![Figure 1. Effect of the pH of the 50 mM K-phosphate incubation buffer on the capability of grapevine cells to reduce TTC. Bars show SE (n=3).](image)

Titration of the TTC reduction with KCN and SHAM
Preliminary inhibition studies (Table I) showed that cyanide (0.1 mM) inhibited TTC reduction by 15%, while antimycin A (2 μM) and SHAM (1 mM) had little inhibitory effects. However, when cyanide and SHAM were present both, TTC reduction was inhibited by 49% (Table I). This effect was hardly significant in the presence of antimycin A, in which case an inhibition of 56% was attained (Table I).

From these results, and in accordance with Day et al. (1980), it can be concluded that TTC reduction in grapevine cells can be mediated by both mitochondrial respiratory pathways, and that the cyanide-resistant pathway remains less active until the cytochrome system is inhibited. Under such circumstances, cyanide and SHAM together exhibit greater inhibitory activity than either inhibitor alone (Table I).

Day et al. (1980) stated that the maximum capacity of the alternative pathway (Vₐₐₐ) in mitochondria can be calculated by measuring electron transport in the presence of cyanide. In order to calculate Vₐₐₐ, grapevine cells were titrated with KCN in the absence of SHAM. The results shown in Fig. 3 illustrate that, although at lower concentrations (0.05 mM) KCN