Suppose that we are interested in giving a theory of meaning for a particular language containing 'necessarily' by supplying a truth theory for that language; can we then interpret 'necessarily' ('\(\Box\)') at its face value in the object language ('OL'), that is as an operator on closed and on open sentences rather than a quantifier, without being involved in falsehood? Let us call such a treatment an operator treatment. I shall argue that we can give such a homophonic treatment.¹

This may seem to be a purely technical question. But in fact the possibility of giving such a theory has a direct bearing on a number of issues in the philosophy of language; so the interest of the question, while undeniably technical in part, goes beyond that of disagreement with those writers who have claimed that no such operator treatment can be given.² Some of the issues upon which such a treatment bears are these:

(i) It must be of interest to see developed an alternative to metalinguistic analyses for the (admittedly somewhat special) case of modality in order that we can properly assess the choice between them. Metalinguistic analyses of the kind that would be given by paralleling Davidson's paratactic account of indirect discourse, extended to cover relational attributions,³ systematically construe modal discourse without quantifying over nonactual objects or worlds at all: but this advantage is of course shared by an operator treatment.

(ii) An adequate operator treatment will show there to be no essential connexion between fulfilment of Tarski's Convention T and extensionality of a truth theory with respect to predicate position, naively construed. This would equally be shown by an adequate operator treatment of temporal operators. But if we had only the temporal case to show that there is no essential connexion between Convention T and extensionality, it would be open to someone to maintain that nonextensional truth theories exist only where if the OL were of greater expressive power, we would need to treat it as quantifying over objects (times), with the semblance of nonextensionality.
disappearing. Such remarks cannot be made in the modal case unless we are
prepared to take literally the picture of the actual world as one among many
equally existent possible worlds.

In fact I must admit to having a doubt as to whether there is a philosophi-
cally significant sense in which necessity contexts are nonextensional with
respect to predicate position. Naturally no one will deny that if we say that
a context — is so nonextensional iff the schema

\[(E) \quad \forall x_1 \ldots \forall x_n(\varphi(x_1, \ldots, x_n) \equiv \psi(x_1, \ldots, x_n))\]

\[
\supset (\underline{\varphi} \equiv \underline{\psi})
\]

(where \(\varphi\) and \(\psi\) are of degree \(n\)) fails, then \(\Box\) produces nonextensionality. Let us however reflect for a moment upon why we count ordinary first-
order contexts as extensional. In the move from a purely sentential language
(with only truth-functional connectives and unstructured atomic sentences)
to a first-order language with the structure of the schemata of the predicate
calculus, the fundamental semantic notion shifts from truth to a relativized
notion of truth relative to a sequence of objects (satisfaction). Now in
counting first-order contexts as extensional by the holding of every instance
of \((E)\), we take as antecedent of the conditional in \((E)\) a condition which is
tantamount to the satisfaction of \(\varphi\) and \(\psi\) by all the same sequences of
objects. We do not require in the antecedent merely their joint satisfaction
or nonsatisfaction by one particular sequence of objects: if we were to, first-
order contexts would count as nonextensional by such a test. That is, in
moving from the sentential to the first-order case, in our test for extension-
ality the antecedent of \((E)\) does something equivalent to universally
generalizing on the new argument place (that for sequences) of the new funda-
mental semantic notion. But then a fair comparison in the move from the
first-order to the modal case must allow the corresponding universal general-
ization (or analogous operator condition) to hold between \(\varphi\) and \(\psi\) in the
antecedent of the test for the modal case. Speaking temporarily in possible
world terms, the antecedent must be that for any possible world \(w\) and
sequence \(s\), \(s\) satisfies \(\varphi\) in \(w\) iff \(s\) satisfies \(\psi\) in \(w\). Clearly when this con-
dition holds, then for any first order modal context — — , we have

\[\underline{\varphi} \equiv \underline{\psi}\]

There may be a difficulty in some cases in expressing a condition equivalent
to the antecedent condition itself in the OL; but certainly in S5 for instance