Pharmacokinetics of Bleomycin in Man

III. Bleomycin 57Co Vs Bleomycin

D. S. Alberts¹, Hsiao-Sheng G. Chen¹, J. M. Woolfenden², T. E. Moon¹, Sai Y. Chang¹, J. N. Hall², K. J. Himmelstein², J. Gross¹, and S. E. Salmon¹

¹ Section of Hematology and Oncology, Department of Internal Medicine and The Cancer Center, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
² Division of Nuclear Medicine, Department of Radiology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
³ Department of Chemical Engineering, University of Kansas, Lawrence, Kansas, USA

Summary. Of all the bleomycin-containing radiopharmaceuticals, bleomycin 57Co has proven the most useful whole-body tumor-imaging agent. We have studied its in vitro physicochemical properties and in vivo disposition in animals and man to optimize its use as a scanning agent. High-pressure liquid chromatographic analysis of the standard bleomycin 57Co preparation (1 unit bleomycin plus 1 mCi chloride 57Co showed it to contain 1% free chloride 57Co. Dialysis experiments showed that bleomycin 57Co does not dissociate as it diffuses through a dialysis membrane. In nine patients, bleomycin 57Co had a t½ of 3.4 h, a t½ of 45.8 h, a Vₐ of 12.1 liters/m² and a 24-h urinary excretion of 82.1% of the administered dose. In comparison, bleomycin, assayed by radioimmunoassay, had a terminal phase plasma t½ of only 4.0 h, a similar Vₐ (17.3 liters/m²), and a 24-h urinary excretion of only 44.8%. Bleomycin 57Co tumor-to-plasma concentration ratios ranged from 14.1-23.8 at 1 day to 5.4 at 2 days after administration. Our finding that tumor imaging with bleomycin 57Co is best achieved at 24 h is well explained by its almost complete urinary elimination in the first few hours after administration and the peak tumor-to-plasma ratio achieved at 24 h. One disadvantage of bleomycin 57Co as a scanning agent is its very extended plasma t½. In rabbits chloride 57Co has the same prolonged plasma terminal elimination phase (t½) as our standard bleomycin 57Co preparation, which contains chloride 57Co as a 1% impurity. Removal of this impurity prior to scanning or use of cold cobalt chloride to help eliminate it from the plasma might result in a shortened bleomycin 57Co plasma t½.

Introduction

Bleomycin 57Co is a useful whole-body tumor imaging agent in the evaluation of cancer [4, 6, 9–12]. It is one of a group of scanning agents formed by chelating the antitumor antibiotic bleomycin with a radionuclide label [5, 9]. Several investigators [3, 5, 18] have shown that bleomycin 57Co has the highest tumor-to-nontumor tissue distribution ratios of all radiolabeled bleomycins. Furthermore, bleomycin 57Co chelate may concentrate in tumor to a higher degree than free bleomycin [5]. Although there are published disposition data for bleomycin 57Co in animals and man there has been no direct comparison between bleomycin and its 57Co chelate in patients. We have studied the disposition of both bleomycin and bleomycin 57Co in nine cancer patients in an attempt at a fuller understanding of the tumor-imaging properties of bleomycin 57Co. Control studies were conducted in vitro and in animals to determine the stability of the chelate and the pharmacokinetics of bleomycin 57Co so that effects of dissociation and/or metabolism could be determined.

Materials and Methods

Bleomycin 57Co in Preparation and Tumor Imaging

Bleomycin 57Co was prepared by diluting 57Co in 0.5 N HCl to 0.1 N with normal saline, reconstituting bleomycin (Blenoxane, Bristol Laboratories, Syracuse, N.Y.) with normal saline, and combining 57Co and bleomycin to achieve an activity of 1 mCi 57Co per unit of bleomycin. The pH of the complex was adjusted to 6.0 with sodium acetate, and the volume was adjusted with normal saline to yield an activity of 1 mCi per milliliter. The final solution was filtered through a 0.22-μm sterile Millipore filter. Tests were performed to monitor sterility, apyrogenicity, and radiochemical and radionuclide purity. Imaging studies were performed with the aid of a gamma camera with whole-body imaging table (Searle Radiographics Pho/Gamma IV) at 6 and 24 h after injection in all patients, and again at 48 h in 5 patients. Whole-body images and spot views of the anatomic areas of concern were obtained in all patients.

HPLC Analysis of Bleomycin 57Co

The purity of bleomycin 57Co was analyzed by high-pressure liquid chromatography (HPLC). Freshly prepared bleomycin 57Co was di-
rectly injected onto a reverse phase column (4 mm × 25 cm μC18, Bondapak, Waters Assoc., Milford, Mass.) and the inorganic 57Co separated from the bleomycin 57Co. The column was equilibrated with 10% acetonitrile in 0.01 N ammonium acetate (pH 4.5). Upon injection of the sample the solvent was programmed to 35% acetonitrile in 0.01 N ammonium acetate (pH 4.5). The flow rate was maintained at 2 ml per min and each 1-ml fraction was separately assayed for 57Co content.

Dialysis of Bleomycin 57Co

Back dialysis experiments were done to determine whether the 57Co label remained in a chelated form as bleomycin 57Co diffused through a dialysis membrane. Thirty 1-ml dialysis bags containing human plasma were placed into a 500-ml beaker containing 200 μCi bleomycin 57Co plus 27 U bleomycin in phosphate-buffered saline (PBS) at 37°C. Twenty four hours later the dialysis bags were removed and placed in 500 ml fresh PBS. At 0, 0.5, 1, 2, 3, 5, 6, 8, 16 and 24 h, three dialysis bags were removed and their contents assayed for 57Co by gamma counting and for bleomycin by radioimmunoassay (RIA).

Blood, Urine, and Tumor Sampling

Blood samples (10 ml) were obtained from patients through a heparin lock and collected in tubes containing 100 IU heparin. Blood samples were taken just prior to the start of bleomycin therapy and at 5, 10, 15, 30, 45, 60 min and 2, 3, 4, 6, 8, 16 and 24 h after drug administration. Fractional urine collections were taken for the first 8 h after drug injection and then at varying intervals for at least 24 h. Urine samples were stored in sterile containers at 4°C. Tumor biopsies were obtained for diagnostic purposes in four head and neck cancer patients between 24 h and 6 days after radionuclide administration. The tissue samples were weighed and then assayed for 57Co activity in a well scintillation counter.

Assay Procedure

Blood samples were centrifuged at 4°C (2,000 rpm for 10 min). The resulting plasma was frozen at -20°C. The bleomycin concentrations in plasma and urine were determined by means of the antiserum and radioimmunoassay (RIA) technique developed by Broughton and Strong [2]. Bleomycin was labeled for RIA with 125Iodine; 57Co and 131I were counted simultaneously in a Hewlett Packard well scintillation counter with appropriate energy discrimination and correction for cross-talk between channels.

Plasma Disposition of Bleomycin 57Co and Chloride 57Co in Rabbits

Female New Zealand white rabbits (Blue Ribbon Rabbit Tree, Tucson, AZ) weighing 4 kg and maintained on normal laboratory rabbit chow were given 0.2 ml bleomycin 57Co (200 μCi 57Co) as IV bolus injections. Blood samples were collected from a heparinized, indwelling jugular catheter at 5, 15, 30, 60 min and 2, 4, 8, 12, 24, and 48 h after drug administration. The rabbits were kept in metabolic cages for collection of 24-h urine samples.

Patients and Treatment

Patient characteristics for the nine study patients are summarized in Table 1. Informed consent was obtained from each patient prior to study. All patients had advanced cancer and received bleomycin for therapeutic purposes. All patients but one (EL) received bleomycin and bleomycin 57Co simultaneously by IV bolus injection. The bleomycin dose varied between 13.7 and 19.9 (mean 15.4) U/m² body surface area. All patients received 1 mCi bleomycin 57Co.

None of the patients received other anticancer drugs within 3 weeks of the bleomycin pharmacokinetic studies. An attempt was made to stop all drugs at least 3 days prior to the bleomycin disposition studies; however, it was necessary to continue analgesic medication in four of the nine patients (Table 1).

Since bleomycin is eliminated mainly through the kidney, we studied patients with normal renal function. Serum creatinine concentrations were normal (0.7–1.3 mg%) for all nine patients.

Data Analysis

Bleomycin 57Co concentration versus time data obtained from each patient and the composite data for all patients were fitted to a multi-exponential equation, using NONLIN [7]. Preliminary parameter estimates were obtained from a recently published method CSTRIP [15]. Except for one patient (MR), the equation used was

$$\ln C = \ln \left(A_1 e^{-\alpha t} + A_2 e^{-\beta t} + A_3 e^{-\gamma t} \right),$$

where C is the bleomycin 57Co plasma concentration at time t after drug administration, $A_{1,2,3}$ are coefficients, and α, β, and γ are first-order elimination rate constants. For patient MR a bi-exponential

<table>
<thead>
<tr>
<th>Patient</th>
<th>Tumor type</th>
<th>Sex</th>
<th>Age (year)</th>
<th>Weight (kg)</th>
<th>Height (cm)</th>
<th>BSA (m²)</th>
<th>Serum creatinine (mg-%)</th>
<th>Bleomycin IV dose (U)</th>
<th>Bleomycin IV dose (U/m²)</th>
<th>Other drugs taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>Head and neck</td>
<td>M</td>
<td>55</td>
<td>50.0</td>
<td>158</td>
<td>1.51</td>
<td>1.0</td>
<td>30</td>
<td>19.9</td>
<td>None</td>
</tr>
<tr>
<td>EG</td>
<td>Cervix</td>
<td>F</td>
<td>59</td>
<td>72.0</td>
<td>170</td>
<td>1.83</td>
<td>1.0</td>
<td>25</td>
<td>13.7</td>
<td>None</td>
</tr>
<tr>
<td>EM</td>
<td>Head and neck</td>
<td>F</td>
<td>64</td>
<td>54.3</td>
<td>170</td>
<td>1.67</td>
<td>0.9</td>
<td>25</td>
<td>15.0</td>
<td>None</td>
</tr>
<tr>
<td>HH</td>
<td>Cervix</td>
<td>F</td>
<td>61</td>
<td>58.6</td>
<td>159</td>
<td>1.60</td>
<td>1.2</td>
<td>24</td>
<td>15.0</td>
<td>Demerol</td>
</tr>
<tr>
<td>MM</td>
<td>Head and neck</td>
<td>F</td>
<td>61</td>
<td>92.8</td>
<td>158</td>
<td>1.86</td>
<td>0.9</td>
<td>30</td>
<td>16.1</td>
<td>Demerol</td>
</tr>
<tr>
<td>MA</td>
<td>Head and neck</td>
<td>M</td>
<td>56</td>
<td>99.4</td>
<td>171</td>
<td>2.05</td>
<td>1.0</td>
<td>30</td>
<td>14.6</td>
<td>Percodan</td>
</tr>
<tr>
<td>SR</td>
<td>Cervix</td>
<td>F</td>
<td>42</td>
<td>52.6</td>
<td>162</td>
<td>1.57</td>
<td>0.9</td>
<td>23</td>
<td>14.6</td>
<td>None</td>
</tr>
<tr>
<td>MR</td>
<td>Head and neck</td>
<td>M</td>
<td>84</td>
<td>60.0</td>
<td>163</td>
<td>1.65</td>
<td>1.1</td>
<td>24</td>
<td>14.5</td>
<td>None</td>
</tr>
<tr>
<td>EL</td>
<td>Ovary</td>
<td>F</td>
<td>63</td>
<td>63.1</td>
<td>157</td>
<td>1.62</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>None</td>
</tr>
</tbody>
</table>