Pharmacokinetics of Intravenous Cyclophosphamide in Man, Estimated by Gas-Liquid Chromatography

F. D. Juma, H. J. Rogers, J. R. Trounce, and I. D. Bradbrook

Departments of Clinical Pharmacology and Forensic Medicine, Guy's Hospital, Medical School, St. Thomas' Street, London SE1 9RT, England

Summary. A simple gas chromatographic assay utilizing alkali flame ionisation detection is described for the estimation of cyclophosphamide as its trifluoroacetate derivative from plasma. Examination of five patients following intravenous cyclophosphamide gave values of 8.9 h (SD 2.7) for the half-life and 0.061 liters/h/kg (SD 0.011) for whole-body clearance of the drug.

Introduction

Cyclophosphamide is one of the most widely employed of all cytotoxic agents in clinical practice. It undergoes extensive metabolism following entry into the body into a number of cytotoxic metabolites (Fenselau et al., 1977), and although the parent compound is not cytotoxic in itself, its estimation is a convenient point from which to initiate investigation into the clinical pharmacokinetics of this alkylating agent. Assays published hitherto for its estimation in plasma have relied mainly upon the use of radiolabelled drug (Cohen et al., 1971; Bagley et al., 1973). Thin-layer chromatographic assays yield non-linear calibration curves and reproducibility, of their results is poor (Norpoth et al., 1973), whilst gas-chromatographic assay based on electron-capture detection is subject to interference from endogenous substances and/or cyclophosphamide metabolites, producing a spurious detector response and poor reproducibility (Pantarotto et al., 1974). A combination of gas chromatography and mass spectrometry (Pantarotto et al., 1976; Jardine et al., 1976) has therefore become the method used by most investigators. The method described below offers a rapid and simple technique for cyclophosphamide estimation, which exploits the relatively inexpensive alkali-flame ionisation detector.

Materials and Methods

To 0.5 ml of plasma containing cyclophosphamide in a tube with a ground-glass stopper is added 5 μl of the internal standard solution, 400 μg/ml ifosfamide in methanol (ifosfamide was a gift from Prof. Dr. N. Brock, Asta Werke A.G., Brackwede, W. Germany), and the mixture is made alkaline with 0.2 ml 1 N sodium hydroxide. This was extracted with 3 ml ethyl acetate (Analar) on a Rolamix (Luckhams, Burgess Hill, Sussex) for 5 min and centrifuged at 1000 g for 5 min, and the ethyl acetate layer was transferred to 15-ml reaction tubes with PTFE-lined screw tops. This extract was evaporated to dryness under a gentle stream of air at 60°C. To the dried residue were added 100 μl ethyl acetate and 50 μl trifluoroacetic anhydride (Sigma). The screw tops were tightly closed and derivatisation was completed by heating to 70°C in a heating block and maintaining at this heat for 20 min. After cooling, the contents of the tubes were evaporated to dryness under a gentle stream of air at 60°C. The residue was dissolved in 100 μl ethyl acetate and 2 μl was injected into the gas chromatograph. The gas chromatograph employed was a Pye Unicam series 104 with an alkali flame ionisation detector and fitted with a 2.4 metre glass column of 0.4 mm internal diameter, packed with 3% OV 17 on Chromosorb W (AW–DCMS), 60–80 mesh. The operating conditions were column temperature 230°C; detector temperature 330°C; gas flow rates were carrier gas (nitrogen) 75 ml/min, hydrogen 45 ml/min, and air 550 ml/min.

Results

Specimen chromatograms are shown in Fig. 1. No interfering peaks were noted in blank plasma samples. There is no interference from cyclophosphamide metabolites. Underivatised cyclophosphamide produces one or two poorly defined peaks, presumably because of decomposition of the column, which is unsuitable for quantitative work. The sharp peaks produced by the trifluoroacetate derivative allow reproducible and accurate quantitation by the peak height ratio technique (Janik, 1975; see also Fig. 1). The use of the alkali-flame ionisation detector, which gives selective responses to nitrogen-containing molecules, overcomes the main problem encountered with the assay by electron-capture detection, and sample...
clean-up procedures can be rapid and simple without decreasing sample cleanliness. The calibration curve was linear over the range 0.05 μg/ml to 100 μg/ml and the lower limit of detection was 0.01 μg/ml. Ten replicate analyses from plasma at concentrations of 15 μg/ml and 50 μg/ml gave coefficients of variation for within assay variability of 4.0% and 4.8%. The variation between assays was 7.9% at 5 μg/ml (n = 17), 7.4% at 10 μg/ml (n = 16), and 7.25% at 20 μg/ml (n = 11).

The relative response of the detector to cyclophosphamide and the internal standard ifosfamide was determined by estimation of the peak height ratio (cyclophosphamide/ifosfamide) for a mixture of 10 μg of each added to 1 ml plasma, which was then extracted and derivatised as described. This yielded a mean of 1.45 (SD 0.033 for 13 independent estimations).

Details of the five patients studied following rapid intravenous injection of cyclophosphamide appear in

Fig. 1. Gas chromatograms: left, blank plasma; centre, underivatised cyclophosphamide from plasma; right, plasma sample containing 8 μg/ml cyclophosphamide: peak A is ifosfamide, peak B is cyclophosphamide

Fig. 2. Plasma cyclophosphamide concentration in 5 patients following intravenous cyclophosphamide. △: patient 1; ○: patient 2; ▲: patient 3; ●: patient 4; ○: patient 5

Table 1. Pharmacokinetic parameters of cyclophosphamide

<table>
<thead>
<tr>
<th>Patient</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Age</td>
<td>56</td>
<td>57</td>
<td>61</td>
<td>66</td>
<td>45</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>83</td>
<td>88</td>
<td>70</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>LV dose (mg)</td>
<td>800</td>
<td>800</td>
<td>1000</td>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

Exponential parameters:

- A (μg/ml): 10.43, 6.67, 10.93, 35.81, —
- α (h⁻¹): 2.37, 3.58, 3.87, 3.72, —
- β (h⁻¹): 0.056, 0.069, 0.070, 0.116, kₑ: 0.108
- t₁/₂(β) (h): 12.38, 10.00, 9.94, 5.97, 6.42
- Vₑ (l/kg): 0.44, 0.52, 0.57, 0.22, —
- Vdβ (l/kg): 0.82, 0.84, 0.87, 0.58, 0.70
- Clearance (l/h/kg): 0.046, 0.058, 0.060, 0.067, 0.076

Key to drugs: V = vincristine; P = prednisolone; Ad = Adriamycin; N = nitrazepam; Ac = alclofenac; M = metoclopramide

Patient 5 data fitted to one-compartment open model: C₀: estimated plasma cyclophosphamide concentration immediately after i.v. injection; kₑ: first-order elimination rate constant