Genetic Control of Esterases in Common Wheat*

R. CUBADDA, A. BOZZINI and E. QUATTRUCCI

Istituto Nazionale della Nutrizione, Roma, and Laboratorio Applicazioni in Agricoltura, C.N.E.N., Centro Studi Nucleari Casaccia, Roma (Italy)

Summary. A refined technique of gel electrofocusing revealed the esterases in caryopses of *Triticum aestivum*, *T. durum* and *Triticum timopheevi*. In *T. aestivum*, 17 isoenzymatic bands were ascertained in the pH 5—8 range: 11 were of higher intensity, 4 were weak and two very weak. Using Chinese Spring nulli-tetrasomic lines it was possible to locate the genetic control of several isoenzymes in the chromosomes of the homoeologous group 3. In chromosome 3A three bands are coded; in 3B four bands are coded; and in 3D two bands out of the eleven of higher intensity.

*T. durum*, as expected, lacks bands coded in *T. aestivum* by chromosome 3D. *T. timopheevi* presents a quite distinct isoenzyme pattern, thus confirming its different speciation. Two major bands do not disappear in any of the nulli-tetra lines analyzed: it is supposed that these isoenzymes could be coded by at least two of the chromosomes of the group three involved in esterase control. The presence of several esterase isoenzymes in wheat is both evidence of their additivity with increasing ploidy level and biochemical support for the hypothesis that there is a higher possibility of adaptation of polyploids compared with diploid species.

Introduction

In recent years several investigations have been undertaken to study the genetic control of synthesis of reserve and enzymatic proteins in higher plants, for instance, in maize (Schwartz et al., 1965; McDonald and Brewbaker, 1972; Scandalios, 1969), in barley (Solari and Favret, 1969), *Solanum* (Desborough and Peloquin, 1967), *Gossypium* (Cherry et al., 1970, 1971), *Avena* (Marshall and Allard, 1970; Murray et al., 1970), sugar beet (Lerch and Wolf, 1972), etc.

Studies on these proteins have also been an interesting tool to investigate the phylogenetical relationships between related species (Johnson, 1972; Bozzini et al., 1970; Nakai et al., 1971).

Wheat is an interesting model because of its polyploid constitution, the presence of some ancestors at diploid and tetraploid levels, the availability at hexaploid level of aneuploid series (nullisomics, nullitetrasomics, ditelocentric, etc.) which allow detailed chromosomal analyses.

Using nulli-tetrasomic lines Shepherd (1968) found that a consistent fraction of gliadins, fractionated by starch gel electrophoresis, are controlled by factors carried in chromosomes of the homoeologous groups 1 and 6 of bread wheat.

Bozzini et al. (1970) found, by immunochemical methods, genes in 3D and 4D chromosomes controlling the synthesis of two albumines present in *T. aestivum* and absent in *T. durum*. Cubadda (1973) found that in homoeologous chromosomes of group 3 are located genes involved in the synthesis of seven albumin fractions. Brewer et al. (1969) reported that isoenzymes of alcalin-phosphatase are coded by 4B and 4D chromosomes. Hart (1970) demonstrated that triplicate genes of alcohol dehydrogenase are located in chromosomes 4A, 4B and 4D. Esterases have also been the object of some studies. Barber et al. (1968), using roots, leaves and caryopses of bread wheat aneuploids, of *Secale* and *Triticale*, located genes coding esterases in the left arm of the 3A chromosome. Bergman and Williams (1972) located esterases in chromosomes of homoeologous group 3. In the present study further information is reported on the genetic control of wheat esterases. These enzymes have previously been separated by Cubadda et al. (1973) using gel-electrofocusing and classified, by substrate specificity and selective inhibitors, as isoenzymes belonging to carbossil-esterhydrodrolases or aliaesterases (3.1.1.1 following the international code).

Material and Methods

The method used to ascertain whether a chromosome controls the synthesis of a particular esterase fraction relies on the comparison of zymograms of aneuploid lines (nullitetra) with those of the control disomic Chinese Spring. The differences found in zymograms are attributed to the absent chromosome, which, presumably, should carry the gene(s) coding disappearing isoenzymatic fractions.
The material examined consisted of nullitetrasomic lines of Chinese Spring in all possible combinations except nulli 2A tetra 2B and 2D, nulli 4A tetra 4B and 4D; nulli 4D tetra 4B and nulli 6B tetra 6D. Further information was obtained by analysis of the ditelos 3AL, 3BL, 3DRT and several varieties of T. durum, T. timopheevi and T. aestivum.

Enzymatic extracts were obtained by treating milled caryopses with a solution of NaHCO₃ 0.24 M, pH 7.4, in the ratio W/v = 1/4. The solution was then centrifuged at 16,000 × g at 4 °C. Gel electrofocusing was conducted at 4 °C using acrylamide gels, recrystallized before use, with ampholines (LKB, Sweden) at a range of pH 5 – 8. Migration was obtained using a constant current of 2 mA per tube, with a voltage of 350 V, for about 5 hrs. Esterasic activity was then revealed with a mixture of α-naphthylacetate in acetone and Fast Blue RR in phosphate buffer pH 7.2. Further details of the technique have been reported in previous papers (Cubadda et al., 1973).

Results

Fig. 1 shows zymograms of Chinese Spring of nulli 3A tetra 3B and tetra 3D; of nulli 3B tetra 3A and 3D; of tetra 3D and nulli 3A and 3B.

Chinese Spring disomics present 17 enzymatic bands in the range pH 5.3 – 7.4, of which 11 have higher intensity, 4 are weak and two very weak. Only the 11 stronger ones are considered here.

All nulli-tetra lines, except for the homoeologous group 3, show zymograms identical to those typical of Chinese Spring. In nulli 3A tetra 3B and 3D bands, 1, 2 and 6 are absent; nulli 3B tetra 3A and 3D lack bands 3, 8, 11 and 13; in nulli 3D tetra 3A and 3B, bands 5 and 12 are absent. Bands 4 and 10 were always present in all analyzed aneuploids. The results show that the homoeologous chromosomes of group 3 have the genes responsible for the synthesis of 9 out of the 11 major fractions revealed with this technique.

Fig. 2 presents zymograms of T. aestivum cv. Chinese Spring and cv. Marzotto, of nulli-tetra 3D, of T. durum cv. Cappelli and of T. timopheevi.

Zymograms of the two hexaploid wheats appear to be identical, while bands 5 and 12, coded by the D genome, are absent in T. durum (genome AABB). T. timopheevi (genome AAGG) shows a zymogram quite different from the one typical of T. durum.

Fig. 3 shows zymograms of Chinese Spring of nulli 3A tetra 3B, of nulli 3B tetra 3A, of nulli 3D and tetra 3B and of ditelos 3AL, 3BL and 3DRT. Ditelocentrics show a zymogram identical to that of the Chinese Spring disomic. This could be considered as indirect evidence of the location of genes controlling the above esterasic fractions in the opposite arms of the homoeologous chromosomes of group 3.

Discussion

In the present work 17 isoenzymatic bands have been revealed, many more than those obtained by several other authors. This could be a result of differences in