Partial Mispairing and Crossing-Over Between β^0 and δ Genes as the Origin of the $\delta\beta^0$ Thalassemia Gene

A Single Mutational Event Hypothesis

J. M. Cantú*, B. Ibarra, G. Vaca, M. L. Ramirez, and J. Sánchez-Corona

Summary. Two double heterozygous $\beta^0/\delta\beta^0$ thalassemic sibs of Mexican descent were studied. The father had a β/β^0 genotype, while the mother, one sib and several maternal relatives were $\beta/O/\delta^0$ heterozygotes. Parental consanguinity and an apparently low frequency of thalassemia among Mexicans suggested a possible common origin of both β^0 and $\delta\beta^0$ genes. A hypothesis to explain such a possibility is proposed on the basis of a partial mispairing between β^0 and δ genes followed by a crossing-over which would result in a $\delta\beta^0$ recombinant gene. This hypothesis could also be extended to explain the $\beta_22\text{glu} \rightarrow \text{ala}$, $\delta_22\text{ala} \rightarrow \text{glu}$ and $\delta_{116}\text{arg} \rightarrow \text{his}$ Hb variants as recombinants from double crossing-over between β and δ mispaired genes for which the name “interstitial-Lepore” is proposed.

The β thalassemias constitute a heterogeneous group of inherited hemoglobinopathies in which β-chain synthesis can either be reduced or absent (Weatherall, 1976). The latter form is known as β^0 thalassemia, which in some cases is due to the absence of β-globin messenger RNA (β-mRNA) as judged by hybridization to complementary DNA, prepared with viral reverse transcriptase (Forget et al., 1974), and by translation both in whole cells and in cell-free protein synthesis systems (Benz et al., 1975). In other cases the β-mRNA is present but not translated in the erythroid cell cytoplasm (Conconi et al., 1972; Kan et al., 1975; Weatherall, 1976). Although various types of β^0 thalassemia could be deduced from the heterogeneity of results of different investigators (Weatherall, 1976), Forget and Hillman (1977) have recently concluded that until specific structural differences in the β-globin gene of β^0-thalassemics are detected by gene mapping or nucleotide sequence studies, one cannot make any definitive conclusions as to the precise molecular basis of the varied forms of β^0-thalassemia. This assessment was supported by Ottolenghi et al. (1977), who only added that there are at least

* To whom offprint requests should be sent
two different types of β^o-thalassemia, a β-mRNA negative type and a β-mRNA positive type.

Similar methods have been used to identify the defect in $\delta \beta^o$ thalassemias; the results suggest that it arises from a deletion of the β globin gene (Ramírez et al., 1976; Weatherall, 1976).

The purpose of this paper is to describe a family in which two sibs were doubly heterozygous $\beta^o/\delta \beta^o$ thalassemics and to propose a hypothesis to explain the origin of $\delta \beta^o$ thalassemia from a β^o gene after its mispairing with a δ gene followed by crossing-over. An abstract of this paper has already been published (Cantú et al., 1978).

Report of a Case

The 7-year-old propositus (VI-3 in Fig. 1) was the product of a 3rd uncomplicated pregnancy and normal delivery. At about eight months of age, he presented with symptoms of pallor, scleral jaundice, choloria, diaphoresis and hepatosplenomegaly of 6 cm below the costal margin. At this time there was hypochromic anemia with 10.2% of reticulocytes. Later, he presented with several episodes of acute hemolytic anemia, including fever, pallor, jaundice and choloria associated with leukocytosis. A gross diagnosis of Cooley's anemia was established when he was two years of age because of the absence of Hb A, the elevation of Hb F and the clinical manifestations. The patient has required repeated periodical transfusions and long-term folic acid therapy. The hepatosplenomegaly has persisted, although with variations from 3 to 12 cm below the costal margin. From 1972 to 1978 his Hb ranged between 5.3 and 11.3 g/dl and his PCV from 18 to 35%.

Fig. 1. Pedigree. Arrow indicates the propositus. White: β. Black: β^o. Strips: $\delta \beta^o$. (See text for details)