Extremal Problems for a Class of Symmetric Functions

RENATE MCLAUGHLIN

Communicated by M. M. SCHIFFER

1. Introduction

Let R denote the annulus \(\{ z : r_0 < |z| < 1 \} \). D. GAIER [3] introduced the family \mathcal{F} of functions $f(z)$ that are holomorphic and schlicht in R and satisfy the three conditions

(1) \[|f(z)| < 1 \quad (z \in R), \quad |f(z)| = 1 \quad (|z| = 1), \]

(2) \[f(z) \neq 0 \quad (z \in R), \]

(3) \[f(1) = 1. \]

Since then, many extremal problems for the class \mathcal{F} and related classes have been considered ([1], [2], [4] to [9]).

In many of these extremal problems, the extremal function is symmetric with respect to the real axis; or if an extremal function is not unique, there exists a symmetric extremal function [7]. This leads us to consider the compact subclass \mathcal{F}_s of functions whose image is symmetric with respect to the real axis:

$$\mathcal{F}_s = \{ f : f \in \mathcal{F}, f(z) = f(\bar{z}) \}.$$

We shall develop a variational formula for \mathcal{F}_s and use it to solve extremal problems in \mathcal{F}_s. In most cases, we shall obtain unique extremal functions. Several extremal problems that appear to be inaccessible in \mathcal{F} (because many parameters are involved) can easily be solved in the subclass \mathcal{F}_s.

Of course, if an extremal function for \mathcal{F} belongs to \mathcal{F}_s, it is also extremal in the smaller class. Thus, in Sections 3 and 4, our method yields known results.

2. A Variational Formula for \mathcal{F}_s

Each $f \in \mathcal{F}$ maps R onto the unit disk minus some continuum Γ_f containing the origin. If $f \in \mathcal{F}_s$, then Γ_f is symmetric with respect to the real axis.

Now let f belong to \mathcal{F}_s. Fix $w_0 \in \Gamma_f$, say $w_0 \neq 0$. Let $D_\rho(w_0)$ ($\rho > 0$) denote the domain consisting of all points either exterior to Γ_f or exterior to the disk $|w - w_0| \leq \rho$. It is known [2], [10] that there exist functions of the form

$$F(w) = w + \frac{a \rho^2 w}{(w - w_0) w_0} + O(\rho^3)$$
that are analytic and univalent in \(D_\rho(w_0) \) and that leave the origin fixed. Here the constant \(a \) depends on \(\rho \) and \(|a|=|a(\rho)|\leq 1 \), and the error term \(O(\rho^2) \) can be estimated uniformly in each closed subdomain of \(D_\rho(w_0) \).

If \(w_0 \) is real, it follows [10] that the function \(F(w) \) can be chosen to have real coefficients, so that \(F(w)=\overline{F(w)} \). Now suppose \(w_0 \) is not real, say \(\text{Im} \ w_0 > 0 \). Choose \(\rho \) so small that \(|w-w_0|=\rho \) does not intersect the real axis. There exists a function \(h(w)=w/(w-\overline{w_0})+O(\rho) \), defined and satisfying a Lipschitz condition in the half-plane \(\text{Im} \ w>\text{Im} \ \overline{w_0}/2 \) (this implies that for each constant \(c \) the function \(w+c\rho^2h(w) \) is univalent for sufficiently small \(\rho \)), such that

\[
H(w)=F(w)+\frac{\bar{a}\rho^2}{w_0} h(F(w))
\]

is univalent in \(D_\rho(w_0) \cap \{w: \text{Im} \ w\geq 0\} \) and maps the real axis onto the real axis with \(H(0)=0 \), for all sufficiently small \(\rho \). A computation shows that

\[
H(w)=w+\frac{a\rho^2w}{w-w_0} \frac{\bar{a}\rho^2w}{w-\overline{w_0}} + O(\rho^3).
\]

Now extend \(H \) to a univalent function in \(D_\rho(w_0) \cap D_\rho(\overline{w_0}) \) by setting \(H(w)=\overline{H(w)} \). (Clearly, if \(w_0 \) is real, then \(a \) can be chosen to be real, and \(H \) has the same form as \(F \).)

Proceeding as in [2], computing first the function

\[
W=\frac{a\rho^2W^2}{1-w_0 W} - \frac{\bar{a}\rho^2W^2}{1-\overline{w_0} W}, \quad W=H(w),
\]

we find the following variational formula for the class \(\mathcal{F}_1 \):

\[
V_\rho^2(w)=w \left[1 + a\rho^2 \frac{1-w^2}{w_0(w-w_0)(1-w_0 w)} + \bar{a}\rho^2 \frac{1-w^2}{\overline{w_0}(w-\overline{w_0})(1-\overline{w_0} w)} \right] + O(\rho^3).
\]

3. Maximum and Minimum Value of \(|f(z)| \)

Suppose that \(f \) is an extremal function for the problem

\[
\max_{g \in \mathcal{F}} |g(z)|.
\]

Then \(|V_\rho^2(f(z))| \leq |f(z)| \). Set \(\alpha=f(z) \). The last inequality leads to the relation

\[
\text{Re} \left\{ a\rho^2 \left[\frac{1-\alpha^2}{w_0(\alpha-w_0)(1-\alpha w_0)} + \frac{1-\overline{\alpha}^2}{\overline{w_0}(\overline{\alpha}-\overline{w_0})(1-\overline{\alpha} w_0)} \right] + O(\rho^3) \right\} \leq 0.
\]

It now follows from SCHIFFER'S lemma [10] that the continuum \(\Gamma_f \) satisfies the differential equation \(w'(t)^2 s(w(t))>0 \), where

\[
s(w)=\frac{\text{Re} \alpha-w(1+|\alpha|^2)+w^2 \text{Re} \alpha}{w(\alpha-w)(1-\alpha w)(\overline{\alpha}-w)(1-\overline{\alpha} w)}.
\]