In 1964, the State Veterinarian, Ingolf Zumpt, came across a few Steenbok which had been killed by Africans in the Molopol Reservate, near the Bechuanaland Protectorate in the northern Cape Province. He found them moderately infested with larvae of Strobiloestrus, and isolated some of them on sand on the 27. May. A few pupated after an unexpectedly long pupal period; one male specimen hatched on the 12. August, 1964. It proved to be identical with S. clarkii, described from a male specimen in 1841, which had been caught on the wing at the Cape of Good Hope, and which is now kept in the British Museum. Zumpt (1961) had already drawn the conclusion that Strobiloestrus larvae from the South African Steenbok might belong to S. clarkii, but until the adult was reared, it could not be definitely proved. A second male specimen which Brauer (1878) had studied, is known. It had also been caught on the wing at the Cape and is located in the Zoological Museum of Stuttgart (see Lindner, 1964).

The newly reared specimen of S. clarkii shows clearly that it is different from S. vanzyli Zumpt (1961), described from the Lechwe (Kobus leche Gray) in Northern Rhodesia. In the male sex, S. clarkii is stouter and generally darker coloured. At the narrowest point the frons measures half of eye-length. A characteristic separating feature lies in the measurements of the interfacilium which is broader than long in S. clarkii, but clearly longer than broad in S. vanzyli. In both species, the thorax also shows a different structure. In S. clarkii, it is broadest in its anterior part and narrowed towards the scutellum; in S. vanzyli it is more or less parallel-sided, but provided laterally and in front of the suture with a dome-shaped protrusion, which is not clearly developed in S. clarkii. The pattern of the mesonotum is similar, but the anterior median weals are more glossy in S. vanzyli than they are in S. clarkii. A further typical feature which separated S. clarkii from S. vanzyli lies in the distinctly stouter and darker coloured legs,
especially as regards the tibiae. Those of *S. clarkii* are broader and blackish, except at the knees, whereas in *S. vanzyli* they are relatively slender and always yellow. The abdomen of *S. clarkii* is darker coloured, predominantly blackish. The hypopygia of both species are similar, but nevertheless well separable (Figs. 1 and 2). In the body-length,

![Fig. 1. Strobiloestrus clarkii (Clark). Cerci with paralobi in frontal view, phallosome laterally](image1)

![Fig. 2. Strobiloestrus vanzyli Zumpt. Cerci with paralobi in frontal view, phallosome laterally](image2)

S. clarkii is not separable from *S. vanzyli*, but, however, this is a fairly variable feature in the Oestridae.

In his book on myiasis of the Old World, ZUMPT (1965) expressed the opinion that the Klipspringer [*Oreotragus oreotragus* (ZIMMERMANN)] might be the main host of *S. clarkii* and that the Steenbok as well as some other S. African antelopes might be only secondary hosts. This is possible, but should also be proved by rearing the imagines, because the larval stages of the *Strobiloestrus* species are not yet separable from one another. He pointed out that especially the Reed buck [*Redunca arundinum* (BODDAERT)], which in Natal is often found heavily infested, may harbour another distinct *Strobiloestrus* species, and this may also be true for the Klipspringer.

So far, it is only proved that the Steenbok serves as host for the true *S. clarkii*, described from a wild-caught male specimen.

Acknowledgements. We wish to thank the Director of the South African Institute for Medical Research for providing us with the facilities to carry out a