A Semantical Investigation into
Leśniewski's Axiom of His Ontology

Abstract. A structure for the language \(L \), which is the first-order language (without equality) whose only nonlogical symbol is the binary predicate symbol \(\varepsilon \), is called a quasi \(\varepsilon \)-structure iff

(a) the universe \(|\mathcal{A}| \) of \(\mathcal{A} \) consists of sets and
(b) \(a \varepsilon b \) is true in \(\mathcal{A} \leftrightarrow (\exists p)[a = \{p\} \& p \in b] \) for every \(a \) and \(b \) in \(|\mathcal{A}| \), where \(a(b) \) is the name of \(a(b) \). A quasi \(\varepsilon \)-structure \(\mathcal{A} \) is called an \(\varepsilon \)-structure iff

(c) \(\{p\} \in |\mathcal{A}| \) whenever \(p \in a \in |\mathcal{A}| \). Then a closed formula \(\sigma \) in \(L \) is derivable from Leśniewski's axiom

\[\forall x, y . [x \varepsilon y \rightarrow (\exists u)(u \varepsilon x) \land \forall u(v(u, v \varepsilon x \rightarrow u \varepsilon v) \land \forall u(u \varepsilon x \rightarrow u \varepsilon y))] \]

of his ontology, and a somewhat weaker axiom \(\mu \):

\[\forall x, y . (x \varepsilon y \rightarrow x \varepsilon x) \land \forall x, y, z . (x \varepsilon y \land y \varepsilon z \rightarrow x \varepsilon z) \land \forall x, y, z . (x \varepsilon y \land y \varepsilon z \rightarrow y \varepsilon x) \]

which is indeed derivable from \(\lambda \) (Słupecki [4], T. 9.1, T. 7.1 and T. 10.1), and was studied in Ishimoto [1].

As in the usual model theory, a structure \(\mathcal{A} \) is a model of a closed formula \(\sigma \) iff \(\sigma \) is true in \(\mathcal{A} \). A structure \(\mathcal{A} \) is epimorphic to a structure \(\mathcal{B} \) iff an epimorphism (= onto homomorphism) of \(\mathcal{A} \) onto \(\mathcal{B} \) exists. A structure \(\mathcal{A} \) is a quasi \(\varepsilon \)-structure iff the universe \(|\mathcal{A}| \) of \(\mathcal{A} \) consists of sets and for every \(a \) and \(b \) in \(|\mathcal{A}| \),

\[a \varepsilon \{b\} \text{ is true in } \mathcal{A} \leftrightarrow (\exists p)[a = \{p\} \& p \in b], \]

where \(a \) and \(b \) are the names of \(a \) and \(b \), respectively. A quasi \(\varepsilon \)-structure \(\mathcal{A} \) is an \(\varepsilon \)-structure iff \(\{p\} \in |\mathcal{A}| \) whenever \(p \in a \in |\mathcal{A}| \). Then we obtain the following Theorem and Corollary.

Theorem 1° A structure is a model of the axiom \(\lambda \) iff it is epimorphic to some \(\varepsilon \)-structure.

Theorem 2° A structure is a model of the axiom \(\mu \) iff it is epimorphic to some quasi \(\varepsilon \)-structure.
COROLLARY. 1°) A closed formula σ is derivable from the axiom \(\lambda \) iff every ε-structure is a model of σ.

2°) A closed formula σ is derivable from the axiom μ iff every quasi ε-structure is a model of σ.

Compare our corollary with Iwanuś' result:

IWANUŚ THEOREM (Iwanuś [2], Theorem 3.II). A closed formula σ is provable in elementary ontology EO iff every ε-structure whose universe is the power set of some set is a model of σ, where EO is the theory which has λ and the universal closure of each formula of the form $\exists x \forall y (u \in x \leftrightarrow u \in u \wedge \varphi)$, where φ has no free occurrence of x, as nonlogical axioms.

In the body of this paper we shall correctly define each semantical notion along the line of Shoenfield [3], and then prove Theorem and Corollary.

Also following Shoenfield [3] we suppose that the logical symbols \land, \rightarrow, \leftrightarrow and \forall are defined in terms of \neg, \lor and \exists.

1. Semantical preliminaries

Let L be the first-order language (without equality) whose only non-logical symbol is the binary predicate symbol ε. Clearly the axioms λ and μ which are mentioned in the introduction are (closed) formulas in L.

A structure \mathcal{A} (for L) is a pair $<\mathcal{A}, \varepsilon_{\mathcal{A}}>$ of a nonempty set \mathcal{A} and a binary predicate $\varepsilon_{\mathcal{A}}$ in \mathcal{A}.

Let $\mathcal{A} = <\mathcal{A}, \varepsilon_{\mathcal{A}}>$ be a structure. For each a in \mathcal{A}, we choose a constant, called the name of a and denoted by a. Let $L(\mathcal{A})$ be the first-order language obtained from L by adding all the names of elements of \mathcal{A}. We shall define a truth value $\mathcal{A}(\tau)$ for each closed formula τ in $L(\mathcal{A})$ by induction on the length of τ:

$$\mathcal{A}(a \in b) = T \iff \varepsilon_{\mathcal{A}}(a, b),$$
$$\mathcal{A}(\neg \tau') = T \iff \mathcal{A}(\tau') \neq T,$$
$$\mathcal{A}(\tau' \lor \tau'') = T \iff \mathcal{A}(\tau') = T \text{ or } \mathcal{A}(\tau'') = T,$$
$$\mathcal{A}(\exists x \tau') = T \iff \mathcal{A}(\tau'_{x}[a]) = T \text{ for some } a \text{ in } \mathcal{A}.$$

The structure \mathcal{A} is a model of σ, which is a closed formula in L, iff $\mathcal{A}(\sigma) = T$. Hence, when \mathcal{A} is a model of the axiom λ or μ,

$$\varepsilon_{\mathcal{A}}(a, b) \rightarrow \varepsilon_{\mathcal{A}}(a, a),$$
$$\varepsilon_{\mathcal{A}}(a, b) \& \varepsilon_{\mathcal{A}}(b, c) \rightarrow \varepsilon_{\mathcal{A}}(a, c),$$
$$\varepsilon_{\mathcal{A}}(a, b) \& \varepsilon_{\mathcal{A}}(b, c) \rightarrow \varepsilon_{\mathcal{A}}(b, a),$$

for every a, b and c in \mathcal{A}; which will be used later without mention.